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Abstract

Building on recent advances in Natural Language Processing and modeling of
sequences, we study how a multimodal Transformer-based deep learning architec-
ture can be used for measurement and structural narrative attribution in macroeco-
nomics. The framework we propose combines (news) text and (macroeconomic) time
series information using cross-attention mechanisms, easily incorporates differences
in data frequencies and reporting delays, and can be used together with Reinforce-
ment Learning to produce structurally coherent summaries of high-frequency news
flows. Applied and tested on both simulated and real-world data out-of-sample, the

results we obtain are encouraging.
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1 Introduction

“It would be nice to point to recognizable events, of the type that is reported by news-
papers, as the source of economic fluctuations, rather than to residuals from some
equations.” Cochrane (1994, p. 298)

A fundamental problem in macroeconomics is identifying the underlying drivers of eco-
nomic fluctuations and measuring their broader dynamic implications. Empirical research
typically addresses the question using a particular statistical model, with the vector au-
toregressions, introduced by Sims (1980), and later extensions incorporating factor struc-
tures or larger systems (Stock and Watson, 1989; Bernanke et al., 2005; Banbura et al.,
2010), having become standard frameworks. Within this tradition, however, the funda-
mental driving forces of economic fluctuations are residuals from the equations defining
the assumed statistical model. Although successful, this has motivated developments of
methods, starting already with Friedman and Schwartz (1963), that use text and histori-
cal sources to add narrative content to the statistical decompositions (Romer and Romer,
1989; Ramey, 2011; Stock and Watson, 2012; Antolin-Diaz and Rubio-Ramirez, 2018).

This paper takes up the same theme from a different perspective, leveraging Transformer-
based neural architectures (Vaswani et al., 2017). These types of architectures under-
lie recent advances in Natural Language Processing (NLP) and Large Language Models
(LLMs), but are designed for sequence data and increasingly used to analyze time series
dynamics as well as multimodal learning using both text and time series variables (Wen
et al., 2023; Xu et al., 2023).

In particular, we explore how a Transformer-based architecture can be combined with
a user-specific economic view, or structural prior, to build a model called the Narrater,
which simultaneously processes text and time series data via joint contextualized repre-
sentations of the two data modalities. In line with the description above, the purpose
of this model is to provide a reliable estimate of economic fluctuations and their under-
lying structural drivers, coupled with narrative attribution of the associated texts. We
then show how the model can be used out-of-sample together with Reinforcement Learn-
ing (RL) techniques to produce structurally coherent summaries of a high-frequency flow
of textual information. Accordingly, more than training a deep neural network solely
to optimize predictive performance, we explore how RL and a multimodal Transformer
architecture can be used as a structural narrative filter.

To fix ideas, the problem we study is based on a common and broadly defined hy-
pothesis where text, here economic news, provides timely information about the most
important events affecting macroeconomic fluctuations. Specifically, we assume that both

the texts and economic time series are (partly) driven by the same underlying causes



and events, and that their joint contextualized representations are informative about the
class and sentiment of the associated texts, as well as the historical shock decomposition
commonly used to understand economic fluctuations.!

These arguments do not imply that the Transformer architecture alone can identify
the underlying sources of aggregate fluctuations. Identifying causal relationships from
observational, aggregated data requires imposing (strong) assumptions. Thus, what we
explore is how a Transformer-based architecture can filter multimodal information in line
with a particular structural view. Fundamentally, this structural view must be encoded
in the training data, which we simulate. Conceptually, this approach is related to the re-
cent literature on prior-fitted networks (Miiller et al., 2021; Hollmann et al., 2022; Nagler,
2023), which studies how neural networks can be trained on simulated data to perform
amortized inference under an implicitly specified prior over data-generating processes. In
contrast to this literature, which typically considers broad task distributions and empha-
sizes predictive optimality across heterogeneous environments, we fix a single structural
model and use it as a disciplined prior that governs both the joint distribution of observ-
ables and the associated structural objects of interest. To mitigate in-sample circularity
and assess usefulness, we strictly separate training, validation, and a quasi real-time out-
of-sample evaluation on non-synthetic data. This prevents re-use of the same simulated
sequences and allows testing whether the supervised narrative filter remains informative
when confronted with unseen news and time series data. Importantly, this separation nei-
ther provides model-free identification nor validates the structural view; it only ensures
that the reported performance is not an artifact of evaluating on training data.

In our benchmark configuration we consider the problem of estimating the business
cycle and structural demand, supply, and noise components. The practical usefulness
of this configuration is easy to motivate. From, e.g., an inflation-targeting central bank
perspective having accurate business cycle estimates is important, but knowing that the
business cycle is growing because of higher demand, rather than supply, might be equally
important because the policy rate response will easily be very different in these two cases.

Still, the framework we propose is general and not tied to any specific structural imple-
mentation. It can, for example, be implemented under assumptions ranging from a single

common business cycle shock (e.g., Angeletos et al. (2020)) to much richer descriptions of

1See, e.g., Veldkamp (2011), Shiller (2017) and Chahrour et al. (2021) for information choice mechanisms
where the news-media-economics linkages are described more explicitly within either a behavioral or
rational expectations framework. The proposed framework can in principle also be used for narrative
attribution of shocks. This would however require construction of training data where the mapping
between economic variables and the texts is such that the latter contains unpredictable news. We find
it easier to construct training data under the less restrictive assumption of predictability, as captured by

the historical shock decomposition.



macroeconomic fluctuations (e.g., Smets and Wouters (2007)). To demonstrate the frame-
work’s flexibility, we also test it in a setting where the goal is to capture global oil market
dynamics as identified in Baumeister and Hamilton (2019), and describe two additional,
less-structural, model configurations. One identifies news topics relevant to business cycle
fluctuations (as first proposed by Thorsrud (2018) and Larsen and Thorsrud (2019)). The
other focuses on the model’s ability to handle mixed-frequency data.

The design of the deep neural network we propose builds on the attention mechanism
(Vaswani et al., 2017), and has an encoder-decoder structure using Transformer layers.
This facilitates processing multimodal data and generative modeling of the decoder out-
put. To be precise, the model we design combines two encoders, one for time series of text
data and one for multivariate economic time series. At a given time point, the language
encoder inputs a text sequence, which is processed via a Bidirectional Encoder Repre-
sentations from Transformers (BERT) architecture (Devlin et al., 2018), and outputs an
embedding representation of the whole sequence. The BERT weights are shared across
time points and potential time dependencies across the embedding representations are
modeled using a single Transformer block. Similarly, the multivariate time series encoder
consist of one Transformer block which outputs embedding representations of the multi-
variate time series data. The text and time series embeddings are then fused with the
embedding representation in the decoder, e.g., the business cycle, using cross-attention
layers. The end product is a network that simultaneously processes text and time series
data and performs multi-task learning (Caruana, 1997). Le., the model autoregressively
outputs not only a structural decomposition via the decoder, but also performs narrative
attribution by outputting the associated sentiment and class of the underlying news flow.

While the Narrater is large compared to traditional econometric models it is deliber-
ately designed to be very parsimonious relative to typical LLMs used for text generation.
This, in combination with using pre-trained language encoders and domain specific fine-
tuning, facilitates efficient training and cost-effective usage. Besides capturing potentially
complex and long-range dependencies within a sequence, the Transformer architecture
enables these layers to capture non-linear features of the underlying data via non-linear
activation functions and multi-head attention with softmax weighting. Moreover, the
usage of the cross-attention layers permits modeling sequences measured at potentially
different frequencies and with different lengths - features that are prominent when mod-
eling macroeconomic data.

Based on similar cost and efficiency arguments the model is trained under the assump-
tion of one text per time period. When confronted with multiple news items within the
same period, we show that the model can be combined with RL to produce narrative and

structurally coherent summaries. In this setup, policy functions are estimated based on



reward functions favoring low predictive loss, while optionally incorporating terms that
encourage narrative priors and coherence. A simple special case is greedy selection, which
requires no additional estimation or learning.

Empirical results from both simulation and real-world data demonstrate the model’s
value. On synthetic validation data, the model achieves near-perfect classification accu-
racy and outperforms simple baseline methods and LLMs on classification and sentiment
prediction. Permutation tests confirm that both modalities contribute to predictive per-
formance, while manual audits on the simulated training data suggest strong alignment
between model-generated labels and human judgment.

Ablation studies reveal that multi-task learning improves predictive performance, re-
moving either encoder significantly reduces performance, while experimenting with set-
tings determining the model’s embedding dimensions suggests that larger embeddings
encode more relevant information. Fine-tuning the BERT encoder alongside the other
model parameters is also essential: performance degrades by up to 80% if the pre-trained
parameters are kept fixed.

We test the Narrater on real-world Norwegian macroeconomic data and news from
Dagens Neeringsliv, Norway’s leading business newspaper. In this quasi real-time experi-
ment the model’s business cycle estimates closely match those from traditional methods
and the extracted sentiment is highly correlated with the cycle. Moreover, although the
model and RL routine has to process thousands of news articles every quarter, the news
summaries and classified news flow accord well with conventional (ex-post) human beliefs
and narratives, while the model’s nowcasting performance for GDP growth is comparable
or slightly superior to that of a standard Dynamic Factor Model. In terms of describ-
ing global oil market fluctuations the model produces reasonable narrative attribution
and out-of-sample structural decompositions that are well aligned with those identified
in-sample in Baumeister and Hamilton (2019). The model’s forecasting performance for
the real price of oil is also on-par with a random walk, which is regarded as a compet-
itive benchmark in this setting. Furthermore, we demonstrate that the model performs
well in identifying user-defined news topics and efficiently processes mixed-frequency in-
formation. Thus, the proposed framework appears to be easily adaptable and capable of
addressing diverse user needs.

The remainder of the paper is structured as follows. Section 2 reviews related literature
and situates our contribution. Section 3 presents the Narrater model, while Section 4
details the simulation-based training data and estimation procedure and Section 5 reports
validation results. In Section 6 we describe how to use the model together with RL to
generate extractive summaries and present application results as well as model extensions.

Section 7 concludes.



2 Related literature and contribution

This study intersects with research in both economics and computer science. To our
knowledge, it is the first to propose a multimodal Transformer-based architecture for
economic analysis, and connects to three main strands of the economics literature.

First, we build on the growing body of work using NLP methods in macroeconomics
(Baker et al., 2016; Hansen and McMahon, 2016; Hansen et al., 2018; Larsen et al., 2021;
Bybee et al., 2024). More recent studies incorporate Transformer-based models such as
BERT for text classification and feature extraction (Liu et al., 2021; Gorodnichenko et al.,
2023; Dell, 2024; Gambacorta et al., 2024), with Ash et al. (2026) summarizing the trans-
formative impact of large LLMs on text analysis in economics. Unlike these approaches,
which typically treat text as a standalone feature set, we adopt a fully multimodal frame-
work in which text and time series data share a joint representation, estimated simulta-
neously through a Transformer architecture. This design enables supervised structural
decomposition of economic fluctuations alongside sentiment and class predictions in a
multi-task setup, rather than treating text as a generic control. Together with RL the
model also produces real-time text summaries that tie numerical movements to concrete
news items.

Second, our work relates to the macroeconomic literature on signal extraction, business
cycle measurement, and nowcasting. This literature often relies on large datasets (Stock
and Watson, 1989; Evans, 2005; Giannone et al., 2008; Banbura et al., 2011), handles
mixed-frequency inputs (Mariano and Murasawa, 2003; Aruoba et al., 2009), and increas-
ingly incorporates non-linear or text-based features (Marcellino et al., 2016; Thorsrud,
2018; Burri and Kaufmann, 2020; Shapiro et al., 2022). While our model shares these
features, and natively handles mixed frequencies and reporting lags through the cross-
attention mechanism, it differs from traditional statistical filtering methods by enabling
supervised structural decomposition via deep learning.

Third, we connect to the literature on narrative identification, which dates back to
Friedman and Schwartz (1963) and uses historical documents to interpret and identify
macroeconomic shocks (Romer and Romer, 1989; Ramey, 2011; Stock and Watson, 2012).
Although we do not identify shocks per se, but rather propose a framework for narrative
attribution consistent with a pre-specified structural view, our contribution builds on this
tradition by automating the classification of narrative content and integrating it into a
unified estimation framework.

We do not want to argue, however, that the proposed model necessarily is better
than existing technologies used in economics. Rather, we view our contribution as an
exploration of how recent advances in language modeling and deep learning can provide a

scalable framework for interpreting multimodal information through a consistent economic



lens. Going forward, we envision numerous improvements and extensions to this type of
model architecture. Beyond our applications, the framework is potentially useful in any
setting where high-frequency text (or other unstructured streams) co-evolves with numeric
time series.

At a more general level our study speaks to large fields, foremost within computer sci-
ence, studying multimodal neural network architectures, LLMs for time series modeling,
and so-called foundational models (FM). In terms of the former, Xu et al. (2023) sur-
vey multimodal learning with Transformers, highlighting their intrinsic advantages and
scalability in modeling different modalities and tasks with fewer modality specific archi-
tectural assumptions than comparable methods. Early summation or concatenation of
the embedding representations of the different data modalities is a common design prin-
ciple. Here, to allow for potentially mixed-frequency data and different sequence lengths
across modalities, we instead follow a so-called multi-stream design principle using cross
attention. This is similar to in, e.g., Lu et al. (2019) and Tsai et al. (2019), but extend
this line of research from vision and language modeling to time series and economics.

A related literature uses LLM architectures to explicitly build and train foundational
models for time series analysis (Das et al., 2024; Woo et al., 2024; Jin et al., 2024).
However, for predicting macroeconomic time series the recent study by Carriero et al.
(2024) suggest that these types of FMs do no better than existing econometric models.
Similarly, studies such as Gambacorta et al. (2024) and Dell (2024) demonstrate that
specific fine-tuning of, e.g., BERT, delivers performance on par, or better, than LLMs in
a range of (economic) domain specific classification tasks, e.g., classifying the sentiment of
monetary policy speeches. This motivates a domain specific approach also for narrating
economic fluctuations, which we pursue here in a multimodal setting.

Finally, we speak to a large literature in NLP studying text summarization (Zhang
et al., 2025). Within this tradition exploring how multimodal input, and output, can
improve summarization quality is a growing area of interest extending traditional text
summarization to include other forms of data such as images, tables, and audio. Although
the benchmark Narrater is not a summarization model per se, we demonstrate how its
multimodal design features in combination with RL facilitate narrative attribution and

summarization.

3 The Narrater

The Narrater is built using standard tools from the deep learning literature and recent
advances in modeling sequences using Transformer-based architectures (Vaswani et al.,
2017).
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Figure 1. The Narrater model architecture in the benchmark case of business cycle extraction.

Figure 1 shows a high-level overview of the proposed model architecture in the bench-
mark case of business cycle extraction. Two encoders - text and time series - map each
modality to embeddings of a shared hidden dimension. The time-series decoder inte-
grates these embeddings and autoregressively produces both the model output and the
next-period decoder input. The text encoder uses a BERT language model. BERT-like
models, introduced by Devlin et al. (2018), are pre-trained on large-scale corpora and can
be fine-tuned for a broad range of downstream tasks with minimal architectural modifi-
cation, often achieving state-of-the-art or near—state-of-the-art results. From the BERT
block we extract the sequence embeddings which are then forwarded to an independent
Transformer layer to capture the assumption that text and time series are driven by com-
mon shocks and to some extent share dynamics - so text in period ¢ may predict texts
in later periods. For the same reason, independent Transformer layers are included in
the time series encoder and decoder, and cross-attention blocks fuse the modalities into
shared contextualized embeddings.

In sum, these choices aim to produce a network that processes text and time-series data
simultaneously and autoregressively outputs estimates of economic fluctuations and their
underlying structural drivers, coupled with a narrative decomposition of the textual flow
into its sentiment and class. Below we describe each part of the model in greater detail,
with Section 3.5 highlighting particular modeling choices and benchmark specifications.
Readers unfamiliar with Transformers and BERT might want to consult Appendix D

before proceeding.



3.1 The text and time series encoders

Let a collection of T' text sequences be denoted by s; = (wgt), wgt), . wfft)) fort=1,...,T,
()

where w; "’ represents the i-th token of the ¢-th sequence and n, is the length of that se-
quence. Then write the BERT architecture as a function that performs padding, masking,
inserts special tokens, and transforms each input sequence s; into a contextualized repre-

sentation:

eixt — £ERT(St) c RNXd, (1)

where d is the embedding dimension and 6; encompass all the embedding matrices (token
and position) and weights of the Transformer encoder layers. Here we let el** represent
the sequence embedding associated with the [C'LS] token. This is a common way of
summarizing sequence content when using this type of architecture and serves as an
efficient dimension reduction step in our application.? Next, let E®* € RT*? define the
el vectors stacked for all ¢ € {1,...,T}. In this way, the same BERT structure and
parameters (6;) are reused to model multiple sequences, ensuring that each sequence is
encoded into a high-level representation space that is consistent across all T" sequences.

Now, to allow for temporal relationships in the embedded text sequences we feed E®¢

through a separate Transformer block:
Htxt — fg;F(Emt) c RTXd, (2)

where the fT* function is a standard Transformer structure. Similarly, let x}* € R”
denote a D-dimensional vector of macroeconomic variables at time t;, € {1,...,T;s}.

Each vector is then first projected into a d-dimensional embedding space via:
eifs = Wtsxifs + bt87 (3)

where W, € R>P and b, € R? are learned parameters. The resulting embeddings
are stacked into E** € R”#*? and serve as the input sequence to a Transformer, with

positional encodings added in the usual manner:
Hts — fg;F(Ets) c RTtSXd. (4)

Accordingly, equations (1), (2), and (4) encode the input s, for ¢ = 1,...,T and x{° for
tis = 1,...,T, into the embedding matrices H*** and H.

20ne could alternatively have carried forward embeddings for all the tokens in the sequence. However,
even for moderate time series lengths this would have had severe memory implications for subsequent

Transformer-layers and is thus not something we have experimented with.



3.2 The decoder

To decode this information we build on the sequence-to-sequence type of architecture used
for language translation in Vaswani et al. (2017), but extend and adjust this structure to
process text and time series data.

For this purpose, let X,{ ;€ RX be a time series measure(s), e.g., the business cycle, at
time ¢y, with K’ < D in general and K = 1 here. Next, these K-dimensional observations
are transformed into an embedding of dimension d following the same projections as in

(3) for ty =1,...,Tf, and further processed as:
H{,) = " (B') e R (5)

To accommodate the multimodal information in H*! and H! we then apply two
subsequent cross-attention layers. These are similar to regular self-attention (see (21) in
Appendix D.1), but with the difference that the queries are defined as Q{ ) = H{ )WQ{),
and the keys and values as K" = H**W g+: and V% = H®W e, or K = HE¥W s

and V' = H*Wy... In particular, we first construct:

H, = fi (|, H") e RT, (6)
and then:
H{, = f5,"(H,), H*") € R4, (7)

where &4 denotes the cross-attention mechanism and both functions are combined with
a residual connection and layer normalization as in the standard attention layer.
Intuitively, since the queries for the cross-attention mechanism are derived from one
sequence (the decoder representation), while the keys and values come from another se-
quence (the encoder representations), the cross-attention layers allow one sequence to
attend to another sequence’s latent representations, enabling the attending sequence to
select and integrate the most relevant features from the other sequence. Figure 3 and the
associated discussion in Section 3.5 provide a concrete example of this mechanism and
how it is particular useful in settings with potentially mixed-frequency data or sequences

of different length.

3.3 The model-heads

H{3) contains the decoded and multimodal information provided by the original inputs
s¢, X;° , and x{ - In our benchmark model specification we use H{3) in combination with
three separate model heads for inferring the state of the business cycle, and for classifying
the type and sentiment of the text sequences. For a particular time index, the regression
output is given by:

S’tf+1,reg = th{?,) +b, € RRa (8)

10



where h{3) is the transpose of the t;-th row vector in H{g) and the elements of ¥, f+1reg

are discussed in subsequent sections.

Likewise, for text classification and sentiment estimation:

Viyt1,class = softmax(Wch{g) +b,) €RY, (9)
and:
gtf—i—l,sent = tanh<Wsh{3) + bs)7 (10)

where @i, 41 sent 1S a scalar and tanh is the hyperbolic tangent function, ensuring that
the sentiment is bounded between -1 and 1. Thus, our model generates both continuous
predictions (9,11 ,¢, and J¢,+1,6ent) and a discrete probability distribution (¥, 1 cass)

from the same hidden representation h{3).

3.4 Generative modeling

The original Transformer-based encoder-decoder architecture introduced by Vaswani et al.
(2017) was generative in nature: given an input sequence (e.g., in English), the decoder
produced the output sequence (e.g., in French) one token at a time, conditioning each
prediction on the previously generated tokens. Decoder-only models follow a similar
autoregressive mechanism.

The Narrater inherits this generative structure. Given encoder representations H™"
and H®, along with an initial value x{ , the model autoregressively generates xg , which
then serves as input for the next time step. This autoregressive dynamic is not ex-
plicitly imposed by equation (8), but arises from our modeling assumption: ¥, ftlreg =
(g)t(;)ﬂmeg, g)g)ﬂmeg, cee g}fflueg), where, as discussed further below, x{ ;41 Is constructed as
a sum over selected components of §; | e,

This design supports multi-step forecasting without requiring separate models for dif-

ferent prediction horizons. However, the effective forecasting window is bounded by the

decoder’s maximum sequence length, which defines its memory capacity.

3.5 Comments and benchmark specifications

Several model features and hyperparameter choices warrant discussion. First, the choices
of R (number of structural components) and C' (number of text classes) define the model’s
structural lens. In our benchmark application we set R = 3 (demand, supply, noise), with
demand and supply comprising the latent business cycle factor. This assumes the busi-
ness cycle is driven by fundamentals while observables include measurement noise. Corre-

spondingly, C' = 3, classifying text into the same three categories. These choices are not
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inherent requirements, and the model can easily accommodate alternative specifications
- as exemplified in Section 6.4.

Second, as noted in Appendix D.2, BERT comes in various sizes. We use BERT 1y
(Turc et al., 2019), a compact BERT variant that trades off model size and computation
for a slight accuracy reduction, enabling more efficient deployment while maintaining
strong performance on many NLP tasks. In particular, our BERTTny has 2 Transformer
encoder layers, each with 4 attention heads and a 128-dimensional hidden size (about 4
million parameters).

Third, sequence length limitations in Transformer architectures impact the model’s
ability to capture long-term dependencies. For BERT rny, the maximum sequence length
is N = 512, while for our model we set T}, = Ty = T = 40, equivalent to 10 years of
quarterly data. While longer contexts can be used, they incur higher computational costs.
Similarly, the embedding dimension d, which could in principle vary across query, key, and
value matrices - is fixed at d = 128, consistent with BERTny, using four attention heads.
Increasing d could enhance representational capacity but at a significant computational
expense. For this reason, we do not explore larger values, although we do report results
for smaller d values.

Fourth, we use different time indices for different inputs to emphasize the model’s ca-
pacity for handling mixed-frequency and asynchronous data via (cross-)attention and the
padding and masking operations conventionally used in Transformer-based networks. In-
deed, a key motivation for our multi-stream encoder-decoder design using cross-attention
is its inherent suitability for handling mixed-frequency data, which is a common data
property in macroeconomic contexts (Giannone et al., 2008; Mariano and Murasawa,
2003; Aruoba et al., 2009). In contrast, methods relying on concatenation or simple inter-
actions often require synchronized sequences. While the benchmark specification assumes
quarterly data throughout, an assumption relaxed in Section 6.4, we model the typical
one-quarter lag in time series availability relative to text. Thus, ¢, =ty and t = ;5 + 1,
reflecting the real-world delay in macroeconomic data releases. Figure 2 illustrates the
assumed information structure used for training, and later, for out-of-sample applications
and news summation.

Fifth, for the time series decoder and encoder input dimensions, we adopt K = 1
and D = 8 in our benchmark application, where D is determined by the structure of the
training data (Section 4). Given K < D, our encoder-decoder model shares similarities
with traditional autoencoders in machine learning (Goodfellow et al., 2016) and factor
models in macroeconomics (Stock and Watson, 1989; Forni et al., 2000; Giannone et al.,
2008), all of which reduce input to lower-dimensional latent representations. Unlike stan-

dard autoencoders, however, our benchmark model provides the decoder with the latent
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Figure 2. The Narrater information structure.

business cycle factor X{ - making the learning process more supervised. This structure is

closer in spirit to adversarial autoencoders (Makhzani et al., 2015), which align the latent
code distribution with a prior to ensure meaningful generative outputs.

Finally, attention in the Transformer and cross-attention layers can be either causal
or bidirectional. We set all attention layers in (2), (4), (5), and (6) to causal, but allow
bidirectional attention in (7). This design lets the model perform smoothing - akin to
forward-backward filtering in econometrics - by incorporating future information into
current state estimates.

Figure 3 illustrates the cross-attention mechanism and shows estimated attention
scores (i.e., the softmax outputs from (21)) for one attention head in (2) and two in
(7), based on a validation example. In Figure 3a, the scores reflect a clear autoregressive
structure: text at time ¢ attends only to prior periods. In contrast, the attention heads in
(7) capture richer dynamics: Figure 3c emphasizes contemporaneous links between H{Q)

and H'*! while Figure 3b captures both leading and lagging effects.

4 Training

Multimodal training data are common in many domains but largely unavailable in macroe-
conomics. To address this constraint, we generate synthetic training data via simulation.
While simulation is often used in machine learning simply to augment scarce data, in
our setting it plays a more substantive role: it fixes a structural data-generating pro-
cess that jointly governs observable time-series dynamics, narrative selection, and the
associated structural objects of interest. Training on simulated data therefore instills a

specific structural inductive bias into the Narrater, in the sense that the network learns
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Figure 3. Figures 3a - 3¢ report attention scores (equation (21)), for one of the attention heads in (2)
and two of the attention heads in (7) when processing one observation in the validation set. Figure 3d

reports the manual audit’s confusion matrix.

to interpret multimodal observational realizations through a maintained structural lens.
In this respect, the simulated environment functions as an explicit prior over admissible
data—causal mappings, allowing the network to act as a supervised narrative filter con-
sistent with the assumed structural model.® To avoid over-fitting and circular reasoning,
simply assuming the conclusion we aim to test, we clearly split the observable data used
as basis for the simulations into a training and validation sample and a sample containing

genuinely unseen non-synthetic data.

3Inductive bias refers to the set of a priori assumptions embedded in a learning procedure that guide
generalization from finite data. In this sense, inductive bias is closer to the use of prior information in
Bayesian statistics than to statistical bias in the estimation-theoretic sense; see Caruana (1997); Ruder

(2017) for discussions in the context of multi-task learning.
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Below we summarize the key aspects of the data simulation process for our benchmark
business cycle application and the empirical data sources used to guide it. As the Nar-
rater in principle is agnostic to the specific assumptions underpinning the simulations, we
provide full methodological details in Appendix B. The subsequent sections outline the

estimation procedure, including hyperparameter settings and the loss function.

4.1 Simulation

For our main business cycle application we simulate economic time series data from a
Dynamic Factor Model (DFM). We acknowledge that the true data-generating process
of the economy is undoubtedly more complex and non-linear than any DFM specifica-
tion. However, the DFM is a well-established and effective framework commonly used
in empirical business cycle analysis (Stock and Watson, 2016). DFMs can also be used
for structural inference, and the log-linearized solutions of Dynamic Stochastic General
Equilibrium (DSGE) models can be expressed as constrained DFMs.

Specifically, we assume that observable macroeconomic variables are driven by two
latent factors, an aggregate business cycle factor and an inflation factor, along with id-
iosyncratic noise. These factors evolve in response to exogenous demand and supply
shocks. A demand shock drives prices and output in the same direction, while a supply
shock drives them in opposite directions. The factors themselves are identified using the
unit identification scheme discussed in, e.g., Bai and Wang (2014), letting in particular
GDP growth load with one on the aggregate business cycle factor.

The DFM is estimated using the time series described in Section 4.3. After estimating
the parameters, artificial datasets are simulated and split into training and validation

sets. Each observation includes simulated macroeconomic variables x;° , the latent factor

f

thJ

and its historical shock decomposition ytﬁl,mg, for tys =ty =1,...,Tis + 1.

To link the simulated times series to text, a stratified sampling strategy inspired by
Dell (2024) is applied. This aims to define the semantic territory of the category of
interest in vector space without injecting unintended tone or framing. For this purpose
we first define a set of benchmark key-word-based text sequences representing demand
and supply narratives, and good or bad sentiment. In our application we think about
demand narratives as associated with general expectations and demand, whereas supply
narratives are written about in the context of productivity, efficiency and innovation.
Good or bad sentiment is simply defined using positive and negative word sequences.
Next, we obtain the embedding representation of these benchmark sequences and real-
world text sequences (from the corpus described in Section 4.3) are labeled using their

embedding representations and (cosine) similarity to these benchmarks. Noise is defined

as texts that do not fit either the demand or supply benchmarks well, using a 90th
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percentile threshold as explained in Appendix B.

The class and sentiment of these texts are assumed to be influenced by the same
shocks driving the DFM, consistent with studies portraying the media as “information
intermediaries” (see, e.g., Nimark and Pitschner, 2019; Chahrour et al., 2021). However,
we do not assume a deterministic mapping between shocks and texts, acknowledging the
possibility of incomplete or inaccurate reporting. Instead, to construct s;, foclass; and
Yt sent for training the text class is first sampled from a categorical distribution, where the
class probabilities depend on the relative magnitude of the elements in mg) = |y£;?Teg| at
each time point: vy, cass = ¢ty ~ Categorical(ﬂ'tf) with m,, = (mg?)/ > (mg)) c € R.
Let B. be the set of labeled sequences for class ¢; with known sentimenrtesR {s(b): be B.}.
Then, the class-consistent article whose sentiment is closest (in absolute deviation) to
the target is chosen: by := argminyes, | s(b) — St |, with s, = tanh(yt(;ffzg), and the
text-based input at time ¢ is simply the selected sequence s; = %U(b?f +1), where 1) maps the
chosen article to the representation used by the model, with sentiment y;, sent = s(bif).

Crucially, the associations learned by the Narrater will be shaped by the assump-
tions embedded in the chosen data-generation process, and alternative assumptions are
discussed below. Still, while any of these assumptions may or may not reflect real-world
dynamics, overly simplistic or unrealistic structures are likely to result in poor model
performance when applied to real data or evaluated through manual audits. To facilitate
such evaluations, the DFM is estimated using data from 1986 to 2010, withholding the
post-2010 period for out-of-sample evaluation. Similarly, text data from the post-2010 pe-
riod is excluded from training to allow for independent testing on data never seen during

training.

4.2 A manual audit and robustness

The simulation strategy described above is fast and simple and facilitates generating a
large training data set in an automated manner. To assess whether the automated labeling
procedure aligns well with human classification, we perform a manual audit. From the
generated training data we randomly select 30 articles of each category and manually
label them as demand, supply, or noise.

Figure 3d summarizes the results from the audit. The precision is above 70% for
both demand and supply, and 90% for noise. In terms of sensitivity the performance is
on average slightly better, with a perfect score for the supply category. On average the
automated labeling procedure obtains an accuracy and Fl-score of 79%.

For more concrete examples, Table 1 reports the first sentences of five articles and

their manually and automatically assigned class. As illustrated, the labeling task is not
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Table 1. First sentences of five articles used in the automatically classified training set and the associated

manual audit. The news texts are translated from Norwegian to English using GPT-4.5.

Manual Automated Text

Noise Noise “A frequently repeated accusation against the government parties is that they
have broken their election promises to give Norway a better school system. The
accusation would have been correct if the Conservatives, the Liberal Party, and

the Christian Democrats had promised during last year’s election campaign...”

Supply Supply “The Norwegian postal monopoly is falling, and new international players are
ready to claim their share of the market. Fierce competition, similar to that
in the telecommunications market, is expected. The fall of the postal monopoly
will lead to lower prices for consumers, a variety of new services, many new

small companies that won’t make money, and eventually postal bankruptcies...”

Demand Demand “The National Association of Business Economists (NABE) yesterday released
a survey of 47 leading analysts, expressing that the American economy is facing
a sharp downturn in the first quarter. Unemployment is expected to rise to

around nine percent this year, and this recession is likely the worst...”

Noise Demand “Denmark should not expect special agreements on sensitive political issues in
the Maastricht Treaty. ”The EC cannot grant Denmark exemptions within de-
fense cooperation and the economic and monetary union as long as we demand

that future member states must adhere to the Maastricht Treaty,”...”

Noise Supply “By Friday, all production had already stopped at the small and medium-sized
businesses along Greakerveien, which runs parallel to the Glomma River just
outside Sarpsborg. From the morning, there was hectic moving activity —
saving whatever could be saved. By the afternoon, the business owners could

do nothing but watch as the river rose minute by minute...”

always trivial, and different auditors might reach different conclusions.

In Appendix B.2 we perform a robustness experiment contrasting the embedding-
based labeling procedure used here with a simpler Boolean key-word-based approach.
This alternative labeling procedure does, however, only obtain an accuracy of 46% on the
manual audit, suggesting that the embedding-based labeling procedure is reasonable.

To keep the analysis transparent and results easy to interpret we focus on the sim-
ulation baseline described above. Still, in Appendix B.3 we explore the effects of small
perturbations to the text-time-series mapping. The results suggest that training on data
generated under different assumptions - or directly on pooled data - could potentially fur-
ther enhance model performance and robustness. We leave such explorations for future

research.
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4.3 Data

Consistent with a large literature on business cycle analysis, we utilize a broad set of
macroeconomic time series to infer the latent business cycle. In the benchmark case the
dataset includes Norwegian quarterly National Account Statistics: real GDP (GDP), real
investments (I), and the unemployment rate (U). We also incorporate quarterly measures
of consumer price inflation (CPI), house price inflation (HPI), the interest rate spread
between short and long maturities (SPREAD), and household credit volumes (CREDIT).
These variables, individually or jointly, have been shown to possess strong predictive power
for business cycle dynamics (Estrella and Hardouvelis, 1991; Stock and Watson, 2002;
Schularick and Taylor, 2012). Given the significance of oil for the Norwegian economy
(Bjgrnland and Thorsrud, 2016), we also include the oil price (OIL).

Data are transformed to emphasize cyclical components. Specifically, GDP, I, and
CREDIT are log-transformed and differenced over eight quarters, following Hamilton
(2018). For CPI, HPI, and OIL, we use the four-quarter log difference to approximate
annual inflation rates.

The main text data source is a comprehensive corpus of articles from Dagens Neeringsliv
(DN), Norway’s largest and most widely read business newspaper, and the fourth largest
overall. The articles are sourced from Retriever’s ” Atekst” archive, covering all DN pub-
lications from the late 1980s through mid 2023.* The resulting dataset contains over
500,000 articles. For each, we retain the timestamp, title, and full text, with the article

body serving as input to the model.

4.4 Estimation

The model is trained using Stochastic Gradient Descent with the Adam optimizer. We
employ a batch size of 16 and an initial learning rate of 0.0005, which is halved every
second epoch to facilitate convergence.

All model parameters, ¢; through 6s, along with weight and bias matrices W; and b;
for j € {ts,r, c, s}, are jointly estimated. The BERT1ixy encoder (6;) is initialized with
pre-trained weights (Turc et al., 2019), while the remaining parameters are initialized
using the Glorot scheme (Glorot and Bengio, 2010). To prevent excessive updates to the
pre-trained encoder, its learning rate is set to one-fifth of the rate used for the other model
components.

The benchmark model outputs three predictions, regression, sentiment, and classifica-

4For certain recent years with incomplete data in the archive, missing articles were manually retrieved

from DN’s digital print edition.
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tion targets, and is trained to minimize a weighted composite loss function:

Ltotal = Wy Lr(S’rega yreg) + Ws Ls(ysem‘n YSent) + We LC(S’class? YClass)a (11)

where predictions are evaluated for ¢ty = 2,..., Ty + 1. Mean squared error (MSE) loss is

used for both the regression and sentiment tasks:

Lr(S’T@ga yreg) = Hyreg - Yr‘egH; Ls(ysenta YSent) = ”ysent - ysentH;

and categorical cross-entropy is used for classification:

C
Lc(yclas& YClass) = - Z yélca)mss log(gélc;ss) :

=1

Loss weights are set to w, = 0.5 and w; = w,. = 0.25, reflecting equal prioritization of
the regression and text classification tasks. These weights can be tuned as hyperparame-
ters to optimize predictive performance.

As described in Section 3.5, the model autoregressively constructs output sequences.
However, during training, we use teacher forcing: ground-truth values (y; f+1,reg) are sup-
plied as inputs rather than the model’s own predictions (¥, 11,eg). Similarly, to facilitate
efficient training, input data x{° is standardized to zero mean and unit variance within
each training observation.

We allocate 90% of the dataset for training and reserve 10% for validation. Validation
is performed every 200 iterations. To prevent overfitting, early stopping is triggered after
five validation rounds without improvement. Additional regularization is applied through
L2 penalties on the model head parameters and dropout. Dropout mitigates overfitting
by randomly setting a fraction of hidden units to zero during training (Srivastava et al.,
2014), and is applied throughout the attention and feed-forward sublayers, promoting
reliance on diverse patterns rather than specific features. The composite loss function in
(11), combined with hard parameter sharing via (7), is an example of so-called multi-task
learning and provides another form for (implicit) regularization (Ruder, 2017). In machine
learning this approach has a long history because it typically “improves generalization by
leveraging the domain-specific information contained in the training signals of related
tasks” (Caruana, 1997).

Model training is performed on two NVIDIA RTX 4090 GPUs with 24 GB of memory

each. Training typically completes in approximately 3 hours.

5 Validation results and diagnostics

In this section we use the benchmark business cycle case and validation data to assess
overall model performance, conduct permutation tests, component ablations, and hyper-

parameter sensitivity analyses.
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Table 2. Panel A reports classification and sentiment performance of the Narrater relative to a Naive
Bayes (NB) classifier and the Lasso sentiment regression, as well as relative performance measures on all
tasks compared to three different LLMs. A score below 1 indicates the Narrater performs better. Panel
B reports the performance of the benchmark model relative to several alternative model specification;
without a text encoder (NoTxt); without a time series encoder (NoTS); for two different embedding
dimensions ( TztComp and TsExp); estimating the model without simultaneously fine-tuning the language

encoder (NoFt); removing the sentiment and classification model heads (NoMTL).

Panel Panel

Aane NB / Lasso LLM (zero-shot) Bane Ablation Hyperparameter Fine tuning No MTL
Gemini 03 R1 NoTxt NoTS TxtComp TsExp NoFt NoMTL

Class 0.95 0.42 0.34 0.32 0.36 1.00 1.00 1.00 0.94

Sent. 0.29 0.05 0.04 0.07 0.08 0.70 0.63 0.63 0.16

BusC. 0.55 0.68 0.00 0.83 0.96 1.00 0.97 0.92 0.94

5.1 Model accuracy

On average, the model achieves nearly 100% classification accuracy across the validation
sequences and root mean squared errors (RMSE) of approximately 0.02 for sentiment
predictions and 0.18 for the business cycle predictions. To contextualize these results, we
compare them to three alternative approaches: a Naive Bayes classifier for text classifi-
cation, a regularized Lasso regression for sentiment prediction, and three state-of-the-art
LLMs with multimodal prompts.

Naive Bayes is a simple but often competitive baseline in multi-class classification
tasks. Prior studies have found that deep learning models such as BERT typically out-
perform Naive Bayes by 5-20% (Minaee et al., 2021). For the sentiment task, we estimate
a Lasso regression model using 5-fold cross-validation for hyperparameter tuning. For
both models the document-term matrix is used for training. In terms of using LLMs
directly for time series modeling, Gruver et al. (2023) was among the first to document
that LLMs can surprisingly zero-shot extrapolate time series at a level comparable to or
exceeding the performance of purpose-built time series models trained on the downstream
tasks, while Requeima et al. (2024) demonstrate that LLMs can process numerical data
and make probabilistic predictions at arbitrary locations, guided by natural language text
describing a user’s prior knowledge. Inspired by these developments we query Google’s
Gemini, OpenAl’s 03, and DeepSeek’s R1 with a multimodal prompt (Appendix F), ask-
ing the LLM for the next observation prediction as well as the class and sentiment of the
text.

Panel A of Table 2 reports the model’s performance relative to these baselines. While
the Narrater’s near-perfect classification accuracy suggests the task may not be particu-
larly difficult, the model consistently outperforms Naive Bayes by approximately 5 per-

centage points. In the sentiment regression task, the improvement is more pronounced,
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and the proposed model reduces the RMSE by nearly 70% relative to the Lasso baseline.
The three LLMs demonstrate substantially lower performance on the text classification
and sentiment scoring tasks, with classification accuracy approaching random chance and
sentiment RMSEs an order of magnitude larger than the proposed model’s, suggesting
that a more refined prompt engineering strategy should be adopted. In particular, with
the used prompt, the LLMs do not seem to be able to efficiently utilize the multimodal
information. In terms of predicting the business cycle the relative performance of the
03 model is not bad, but still substantially worse than the Narrater. One reason for the
somewhat weak LLM performance is that they occasionally make extreme predictions, an
observation also made by Carriero et al. (2024). Another reason is likely that these LLMs
are foundational models not trained specifically to utilize structural multimodal informa-
tion to address the problem at hand, and studies such as Gambacorta et al. (2024) and
Dell (2024) also demonstrate that specific fine-tuning of, e.g., BERT, delivers performance

on par, or better, than LLMs in a range of (economic) domain specific classification tasks.

5.2 Permutation tests

The model is trained on data with an assumed multimodal structure. To learn about the
weights the model assigns to the different data modalities we perform permutation tests.’
In the tradition of Breiman (2001) and Fisher et al. (2019), an input feature is determined
as “important” if shuffling its values increases the model error because in this case the
model relied on the feature for the prediction. Here we assess the relative importance of
text versus time series input by randomly shuffling the respective encoder input data and
then comparing the change in predictive accuracy relative to the original case.

Figure 4 presents results for the last elements in the predicted sequences from 10 rep-
etitions of the permutation test. Results for the benchmark Narrater are reported in the
first row in each graph, while the remaining rows report robustness. For the classification
task, performance drops sharply when the text input is permuted, but not when the time
series input is permuted. The absence of a permutation effect on text classification in
our baseline reflects that the textual input is sufficiently informative on its own, making
additional cues from the time series redundant in this setting. This should not, however,
be read as a limitation of the multimodal design itself. In the topic model application

described in Appendix C, for example, we observe that expanding the task complexity

SRather than applying post-hoc feature attribution methods such as SHAP or LIME, we use permuta-
tion tests to evaluate modality-level importance. This approach aligns more closely with our structural
design and provides an intuitive assessment of the model’s dependence on each modality. Moreover, for
Transformer-based architectures it is still an open research question how to apply feature attribution
methods.
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Figure 4. Traditional box plots of relative performance differences from permutation tests. A value

above one indicates that the model performs worse when the particular data input is randomized.

(increasing the number of classes) under the benchmark simulation scheme produces a
stronger role for the time series, and thus a clear multimodal interaction.® In contrast,
both modalities contribute to sentiment and growth predictions. For growth, shuffling
either modality roughly doubles the prediction error, indicating joint dependence. For
sentiment, however, performance deteriorates far more when the text input is random-

ized, highlighting its dominant role in that task.

5.3 Ablation experiments

To more directly assess the contribution of each model component, we conduct ablation
experiments by removing either the text encoder (NoTxt) or the time series encoder
(NoTS) from the full model. In both cases, the modified models are re-estimated to
account for potential reallocation of weights across remaining components.

Panel B of Table 2 summarizes the results. Removing the text encoder leads to a
substantial decline in predictive performance across all outputs, especially for sentiment,
where accuracy drops markedly. While the time series encoder is less critical for clas-
sification, it still plays an important role: sentiment prediction performance declines by
approximately 30% in the NoTS model compared to the benchmark. These findings
closely align with the permutation test results in Figure 4, and demonstrate that the

benchmark model effectively integrates both data modalities to improve prediction.

6In such cases, borderline class assignments, noise, and greater overlap between textual features make it
harder for the model to rely on text alone, increasing the value of complementary information from the
time series. Similar patterns are observed for the additional robustness experiments reported in Figure

4. In the interest of brevity, these are discussed in Appendix B.3.
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5.4 Hyperparameter sensitivity

We also evaluate two reduced-size variants of the benchmark model in which the embed-
ding dimensions of the time series encoder and decoder are reduced by a factor of eight,
significantly lowering the number of trainable parameters. To align embedding dimen-
sions in the cross-attention layers, we consider two alternatives: in the first (TztComp),
text encoder embeddings are compressed to match the smaller time series embeddings;
in the second (TsEzp), the time series embeddings are expanded to match the original
text dimensions. As shown in Table 2, both configurations perform slightly worse than
the benchmark, with negligible differences between them, suggesting that the original
embedding sizes capture meaningful structure.

The NoFt column of Table 2 compares the benchmark to a model in which the BERT
language encoder is not fine-tuned, i.e., the pre-trained weights #; in (1) remain fixed
during training. This constraint leads to a substantial drop in sentiment prediction per-
formance and a 6-8% decline in accuracy for the classification and growth tasks. These
results underscore the importance of task-specific fine-tuning of the language encoder.”

Finally, the last column in Table 2 shows how predictive performance is affected when
the benchmark Narrater model is estimated without the classification and sentiment
regression heads, which previously provided implicit regularization via multi-task learning

(Caruana, 1997; Ruder, 2017). In line with this literature we observe a performance drop.

6 Reinforcement learning for out-of-sample applica-

tions and news summation

To evaluate the benchmark model on non-synthetic data, we conduct a quasi-real-time
out-of-sample experiment using DN news and Norwegian macroeconomic time series (Sec-
tion 4.3). We initialize the model with news texts, macro data, and business cycle values
for the sample 1986Q2-1996Q1, then iteratively roll it forward from 1996Q2 to 2023Q2 -

noting that data after 2010 were not seen during training or validation.®

"The BERT 1y tokenizer is based on an English-language corpus. We experimented with retraining the
encoder using a Norwegian tokenizer and domain-specific corpus, but found that performance declined on
a range of language understanding tasks. While perhaps surprising, we suspect that this negative result
likely is driven by the (limited) size and quality of the text corpus used for re-training. We also tested
the larger, pre-trained Norwegian BERTgasg model (Kummervold et al., 2021), without re-estimating
the model weights. In line with results reported in Table 2, the Norwegian BERTgasg model performed
worse than our benchmark. While such models may offer benefits for more complex tasks, they appear

sub-optimal for our application.
8The experiment is labeled quasi-real-time because we do not use real-time vintages of data but still

assume an information structure that to a large degree mimics the information structure available in a
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Each new quarter contains thousands of news articles, but only one can be mapped
into the model state as the representative story. Thus, the real-time application becomes
a sequential decision problem: once an article is chosen, it enters the state history and can
influence all subsequent predictions. This motivates an RL framing, wherein the Narrater
environment updates states and rewards and an agent scores articles according to a policy,
as illustrated in Figure 2.

To make estimation of the policy function a tractable problem in a high-dimensional
setting, while ensuring predictive accuracy, interpretable narrative attribution, robust-
ness and efficient deployment, we build on three strands of work: (i) entropy-regularized
control, which motivates the use of soft value functions and Boltzmann policies (Ziebart,
2010; Todorov, 2006; Kappen, 2005; Haarnoja et al., 2018); (ii) Kullback—Leibler (KL)
based policy optimization, which provides stable projection methods for updating poli-
cies toward value-weighted targets while remaining close to a baseline distribution (Peters
et al., 2010; Schulman et al., 2015; Abdolmaleki et al., 2018); and (iii) classical rollout
paradigms from stochastic control, which justify usage of short-horizon lookahead to ap-
proximate long-horizon value functions (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2019).

Appendix E.1 briefly outlines the mapping between this framework and the classical
Bellman recursions. Below we describe our approach in greater detail. A simple special

case is greedy selection, which requires no additional estimation or learning.

6.1 Reinforcement learning approach

To outline the problem formulation, we start from the maintained assumption that news
is available for the current quarter whereas the macroeconomic data is not, i.e., t;s = ty
and t = t; + 1. Further, for a generic quarterly time segment, let i denote the i-th
news article in the last quarter 7" in the segment and Np the total number of articles
in this quarter. The state at time T is then sp = (ST, Xlﬁs, x%f), and the action set
Ar ={ar,...,ar N, } consists of all candidate news articles in quarter 7. Choosing ar;
corresponds to selecting article ¢ for narrative attribution as well as model predictions
ygﬂ,mga ngf?dass, and Q%)sem, which in turn feed into the next state sp;.

In general, any reward function can be specified. Here, to emphasize accuracy, allow
for narrative priors, and favor fundamentals and persistence, we evaluate candidates along
four dimensions:

rr(sr,a) = —RMSE (G[)Pﬁ;f, GDPllet) + Ay NPRIOR(a, ar) )
+ Ap FUND(a) + A\p PER(a, H7_1),

real-world application.
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(4)

11Ty reg> the subscripts asso-

where GDPY;ZQ is approximated as the sum of the elements in §
ciated with a are dropped for notation simplicity, and the mathematical definition of each
term is described in Appendix E. In short, accuracy is captured via RMSE(GDP&Z;)TJC, GDPy.1,);
NPRIOR(a, ar) measures similarity between the candidate and a reference narrative ar.
The usage of reference texts is similar in spirit to the narrative identification approach
taken in Antolin-Diaz and Rubio-Ramirez (2018), and helps keep the model aligned with
any narrative prior the model user might have for particular time periods; FUND(a)
scores each candidate article by how likely it is fundamental news (demand or supply)
relative to noise and intends to capture the idea that important events are fundamental;
PER(a, Hr_1) measures persistence and rewards overlap with previously chosen narra-
tives, or in other words, provides higher rewards for narratives that prevail. Finally,
AN, Ar, Ap are hyperparameters governing trade-offs.

Classical optimal control would optimize a policy to maximize cumulative reward, but
with thousands of candidate actions per period (Nz > 2000) this is computationally in-
feasible, and the resulting policies tend to be brittle with poor exploration. We therefore
adopt an entropy-regularized approximation with short rollouts of horizon H and a pa-
rameterized softmax policy (Ziebart, 2010; Todorov, 2006; Kappen, 2005; Haarnoja et al.,
2018).

The rollout-based target distribution weights actions by truncated expected returns:

H-1
gr(a) < E Z Vo (sTen, azyn) ’@T = a] ; (13)
h=0

with discount factor . Setting H = 1 recovers a pure contextual bandit formulation,
matching the setup used, for example, in news recommendation (Li et al., 2010), while
modest H captures near-term dependencies without exploding complexity.

The policy class is a multinomial logistic regression over features ¢(sr,a) extracted

from the multimodal representation in (7):

B exp{ ¢(sr,a) 0}
7T¢9(a/ | ST) - Za/EAT eXp{ﬁ ¢(8T7 a,)TQ}’

where  is the inverse temperature. This amortizes rollout information into parameters

(14)

0, so evaluations at deployment do not require new rollouts.

Training projects the policy onto the rollout targets using a KL-regularized objective:

Ts

£(0) = > [KLlar, 7o | se)) A KL(mo(- | 50,) [ 7o(- | 50.))=Au Hmal- | 51.)) |, (15)
to=1

where t; = 1,..., T, are the (quarterly) decision points. Further, my is a baseline prior

(here ox exp(—RMSE)), entropy H(-) promotes exploration, and Akp,, Ay control conser-

vatism and smoothing. This follows the logic of KL-regularized or trust-region updates
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(Peters et al., 2010; Schulman et al., 2015; Abdolmaleki et al., 2018), ensuring stable and
interpretable policy improvement even in high-dimensional spaces.

While this general policy learning scheme provides a principled foundation for narrative
attribution, in practice it can be useful to employ a simpler, faster rule, more robust to
potential out-of-sample distributional shifts. Specifically, if we restrict attention to the
immediate predictive reward and collapse gr onto the single best candidate, the policy
reduces to a greedy bandit:

ar,; = arg min RMSE (G[)Pﬁ’?Tf, GDPl;Tf) . (16)

a€Ar

As such, equation (16) can be seen as a degenerate case of the general RL framework

without any rollouts and reward based solely on prediction accuracy.

6.2 Application details

In the real-time experiments below, we implement both the greedy baseline of (16) and
the RL policy, trained via contextual bandit rollouts and KL-regularized projections.
We denote these as the Narrater-greedy and Narrater-RL, respectively. The RL approach
permits integrating additional dimensions of narrative quality - such as coherence with the
narrative prior - into a single decision rule. It also balances exploration and exploitation
through the softmax temperature and entropy regularization, and delivers probabilistic
policy weights that quantify the decisiveness of each choice. The greedy rule cannot
accommodate these trade-offs and provides no natural measure of confidence. It does,
however, serve as a fast and transparent benchmark.

To explore the effects of different hyperparameter choices, we consider three versions
of Narrater-RL; the default specification with rewards as in (12); a version emphasizing
only RMSE rewards (Ar = Ay = Ap = 0); and finally a version with only RMSE and
NPRIOR rewards (Ar = Ap = 0). At each decision point the Narrater delivers an up-
dated “smoothed” history of its output history - analogous to standard forward-backward
filtering algorithms in traditional time series analysis. RMSE rewards are computed us-
ing this sequence, ensuring consistency with the information structure encountered in
real-world applications.

In total 110 quarterly decision points, or time segments, are processed. For the initial
segment, covering the sample 1986Q2 to 1996Q1, the history of s,_1, x;° , and x{ ; for
ty =1,...,T} is constructed by iterating the model forward starting from a random draw
of s; and setting X{ equal to the eight quarter growth in GDP. Implementing extractive
summarization and narrative attribution using (16) requires no training. For learning € in
(14) only data for decision points prior to 2010 are used. The selected narrative, and thus

the extractive summary, maximizes m(a | s;), with the optimal selection index denoted 7.
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The reference texts used in the reward function act as narrative priors: they need
not reappear verbatim out of sample, but during training they bias the policy towards
articles that align semantically with their content. Thus, the learned policy is effectively
anchored in a particular narrative direction. Out of sample this anchoring ensures that
new but related articles are more likely to be selected, thereby preserving continuity of
the narrative attribution. Although each decision point in the training sample in principle
could contain a narrative reference article ar, we only specify three related to the collapse
of Long-Term Capital Management in 1998Q3, the 9/11 terror attacks in 2001Q3, and
the bankruptcy of Bear Stearns in 2008Q1.

Appendix E.2 provides additional training details and hyperparameter settings.

6.3 Application results

Capturing business cycle fluctuations and narrative attribution are the primary objectives
of the Narrater. Predictive accuracy of observables, however, provides a more objective
evaluation of model performance. For this reason we start by evaluating growth predic-

tions and then in subsequent sections discuss the model’s narrative output.

6.3.1 Growth predictions

To evaluate the model’s growth predictions we use the sum of the elements in }A’E? lreg

as a forecast of AgGDPr, 1, the observed eight-quarter GDP growth, and compare it
against a Dynamic Factor Model (DFM) benchmark. The DFM follows the specification
outlined in Section 4.1 and produces recursive one-step-ahead forecasts via the Kalman
Filter. To avoid information leakage, we evaluate all models over the 2010-2023 period,
which is strictly out-of-sample for the Narrater.

Figure 5a shows the cumulative difference in squared prediction errors between the
Narrater versions and the DFM benchmark. For the sample as a whole, the differences are
not statistically significant. However, the Narrater models tend to outperform the DFM
during the early Covid-19 period, suggesting the model’s capacity to integrate timely
textual information during periods of heightened volatility. Furthermore, using a fully
RL-based implementation typically yields a small improvement in average forecasting
performance, even with a somewhat outdated policy function. Overall, the Narrater-
RL variant trained with RMSE-only rewards performs best, although the differences are
modest.

To examine how predictive accuracy evolves within a quarter as new information be-
comes available, we focus on the Narrater-greedy model and replace the predictions based

on the 7th article with those obtained as the simple running average of all the ¢ articles
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Figure 5. Figure 5a reports the cumulative squared prediction error difference between the Narrater and
the DFM benchmark. A falling value implies a relative Narrater improvement. The shaded areas are 95%
confidence intervals of differences in predictive performance, computed following Diebold and Mariano
(1995) with HAC corrected standard errors. Figure 5b reports the real-time estimates of y(;f) H1reg implied
by all incoming news and aggregated into either the sum of all its components or only the demand and

supply components. The white areas are time periods with data not seen during training and validation.

within the quarter. Focusing on daily time steps, Figure A.2a (Appendix A) illustrates
this dynamic and echoes findings in the nowcasting literature (Giannone et al., 2008):
Compared to the DFM, the Narrater shows a relative performance gain of approximately
20% at the start of the quarter, which steadily improves, stabilizing around 27% relative

improvement after one month (30 days) of news data has been processed.’

6.3.2 The business cycle and economic sentiment

Figure 5b presents intra-daily business cycle estimates implied by processing all articles in
the application sample. The correlations between the business cycle estimates provided by
the Narrater-greedy and Narrater-RL models are high and above 0.95 (Table A.1 in Ap-
pendix A). For clarity we thus use the estimates obtained from rolling the Narrater-greedy
model forward at each decision point in the sample. Specifically, we display predictions
aggregated from the components of yg'i; +1rege €ither as the full sum or restricted to the
demand and supply components for each article instance in the sample. For comparison,

we also include quarterly business cycle estimates from three standard filtering methods:

9The performance scores in this section are a function of training data assumptions, model structure, and
the adequacy of the data sources used for prediction. To highlight the role of the latter we perform the
predictive experiment using a generic text sequence for all time periods. I.e., we replace the DN news
corpus with the sequence; “This is not a real sentence. This is just noise and should not contribute towards
lowering the prediction error.”, reflecting prior confidence in the DN corpus. The results reported in
Figure A.2b (Appendix A) support this prior and show that the DN-based news helps improve predictive

accuracy with a roughly 25% relative improvement.
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Figure 6. Figure 6a reports, for four randomly chosen dates, the probability score for the most likely

articles and their implied business cycle estimate. Figure 6b reports the real-time estimate of the vector

y(Tf) +1.reg- Lhe white areas are time periods with data not seen during training and validation.

the eight-quarter GDP difference (Hamilton, 2018), the HP filter with A = 40000 (Ho-
drick and Prescott, 1997), and a band-pass filter targeting cycles between 1.5 and 8 years
(Baxter and King, 1999).°

The model’s cyclical estimates are well aligned with the inductive bias instilled into the
model via the training data, and as Figure 5b illustrates, also well aligned with estimates
obtained from the other methods. The usage of the daily news input, however, facilitates
more frequent updates using the Transformer-based model than the other filtering meth-
ods considered here. It is also clearly visible how adding noise to the demand and supply
components of yij} +1.reg Substantially increases the variation in the predictions.

Turning to the quarterly time frequency Figures A.1a and A.1b (Appendix A), compare
the model’s filtered (real-time) and smoothed (retrospective) business cycle estimates.

5 (1)

The squares show YT +1,reg S predicted at the end of each quarterly segment, while the

solid lines reflect the smoothed estimates yg”Tf +1reg- Although the filtered estimates are
revised slightly as new data becomes available, these adjustments tend to be modest,
suggesting robustness in the model’s real-time inference.

A large literature documents a strong link between aggregate sentiment and the busi-
ness cycle (Blanchard, 1993; Barsky and Sims, 2012; Shapiro et al., 2022). Figure A.3a
(Appendix A) shows that Narrater-greedy sentiment, averaged across articles and normal-
ized, correlates with the estimated cycle at 0.83 on a quarterly basis. At the article level,
sentiment is noisier, has a negative bias, and is more weakly correlated, as illustrated

in Figure A.3b (Appendix A). When aggregated to daily frequency, the correlation re-

10The HP filter parameter A = 40000 is standard for Norwegian GDP applications. As Norway lacks
an official business cycle dating authority (unlike the U.S. NBER), the evaluation of cyclical estimates

remains inherently subjective.
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mains above 0.6, supporting the model’s assumption that sentiment and macroeconomic

conditions are (partly) jointly driven by common shocks.

6.3.3 Narrative attribution

Having established that the model produces plausible estimates of the business cycle and
reasonable growth predictions, we now turn to its more structural outputs.

Figure 6a highlights how narrative attribution shapes business cycle estimates. It
reports the implied change in the cycle at multiple dates for the 20 articles with the
highest selection probabilities using the Narrater-RL framework. Selecting a different
narrative can materially shift short-term dynamics, underscoring the value of a systematic
and principled attribution scheme. As we document below, however, the RL-based and
greedy versions considered here produce reasonably similar structural interpretations.

The vector Sf%) +1.reg delivers a real-time decomposition of the business cycle into de-
mand, supply, and noise. Figure 6b plots demeaned contributions over time. Noticeable
business cycle events, such as: the pre-Great Financial Crisis boom is demand-led; the
subsequent downturn reflects negative supply shocks; and the Covid-19 recession com-
bines both, with a modest late-sample demand rebound. Noise is present throughout but
wanes in recent years. The figure reports output from the Narrater-greedy model. The
default Narrater-RL model yields a similar decomposition; component correlations with
the greedy version are 0.93 (demand), 0.93 (supply), and 0.59 (noise).

Although these decompositions cannot be objectively verified, we compare them to
the structural decomposition generated by the DFM used to simulate training data. Fig-
ure A.4 (Appendix A) shows that 70% (75%) and 82% (88%) of the Narrater-greedy’s
(Narrater-RL) demand and supply decompositions, respectively, fall within the admissible
bounds of the DFM’s when this model is estimated using the whole sample. Considering
that Narrater’s outputs are real-time, unlike the ex-post DFM estimates, this degree of
overlap is encouraging.!!

Figure 7 uses the Narrater-greedy model output, and combines quarterly business cycle
estimates with extractive summaries of news articles, using the headline and classification
of article 7 for each quarter. To maintain clarity, summaries are shown selectively, while

Table 3 provides a list of representative first sentences for interpretability. Additional

HFigure A.5 (Appendix A) displays the fraction of news articles classified as demand or supply, aggregated
to quarterly frequency, and using the Narrater-greedy model version. Three observations stand out. First,
only 15-20% of articles are classified as demand- or supply-related, implying most news is categorized
as noise. Second, the temporal distribution of classified news aligns with known events, e.g., increased
demand coverage in the early 2000s and around the Great Financial Crisis, and increased supply coverage
during the early sample period, post-crisis years, and the Covid-19 episode. Third, demand-related

coverage shows more variation over time, possibly due to an upward drift in classification rates.
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Figure 7. Real-time estimate of the vector y%}

a given quarter. To not clutter the graph extractive news summaries are not illustrated for each quarter.

+1,reg together with the headline and class of article a in

The white areas are time periods with data not seen during training and validation. The news texts are
translated from Norwegian to English using GPT-4.5. The stacked bar reports the class share of 7 articles

across the whole sample.

sentiment and class outputs for ¢ articles are shown in Figure A.6 (Appendix A).

Given that each quarter includes over 2000 articles, the quality of these summaries is
notable, and suggests meaningful scope for model-driven narrative attribution. For ex-
ample, headlines such as “Hegnar beaten by Lahnstein”, “The Monster gone in Sweden”
and “Concerned about lower productivity” plausibly reflect noise, demand, and supply
stories, respectively. Moreover, the narrative structure aligns well with known macroe-
conomic developments, for instance, Covid-19-related stories during the 2020 downturn,
recession-themed articles during global slowdowns, and oil-related news during the energy
crisis in 2014 and 2015.

Evaluated across the whole sample, roughly 40% of the summaries are allocated to the
demand and supply classes (Figure 7). To further illustrate how the model output can be
used to gauge the narrative strength of this type of attribution we compute two additional
metrics for each quarter t; the RMSEMargin and ClassSharpness. The RMSEMargin
is defined as the relative performance gap between the best-performing article and the
average performance of the next K = 100 best articles - all in terms of RMSE loss.
Similarly, we define ClassSharpness for quarter ¢ as the proportion of top-K articles
whose predicted class matches that of the chosen article.

Figure 8a illustrates how periods with a high ClassSharpness and RMSEMargin typ-
ically are associated with notable global events and business cycle fluctuations. For in-
stance, both the global financial crisis (2009) and the Covid-19 outbreak (2020) display
relatively large RMSEMargins alongside high class coherence. In contrast, years such as
2002 and 2012 combine low RMSEMargins with weaker class coherence, suggesting more

random and thus less focused narratives.
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Table 3. The headline, first sentences, date, class, and sentiment of selected news stories. The news

texts are translated from Norwegian to English using GPT-4.5.

Date Class Sent.  Headline and text

1998Q1  Noise -0.53  Hegnar swindled by Lahnstein: “Newspapers with profits exceeding two
million kroner lose press support. The Ministry of Culture has enacted

a profit cap that means Trygue Hegnar’s Finansavisen and...”

2000Q4 Demand -0.53  Nervousness and large volatility: “It has been quite a turbulent week for
American and European stock investors. The nervous atmosphere in the

stock markets was underscored by the significant price movements....”

2004Q4  Supply 0.13 Considering increasing production: “Saudi Arabia may increase the
country’s production capacity to 12.5 million barrels per day to ensure

that the oil market is adequately supplied...”
2009Q3 Demand -0.61 “The Monster” is missing in Sweden: “The economic downturn is hitting

Sweden hard, but the country is recovering faster than the government

initially feared...”

2012Q3 Demand -0.65  Interest rates: “A series of disappointing confidence indicators from Fu-

ropean businesses sparked new concern about the euro crisis...”

2017Q1  Supply -0.55  Concerned about falling productivity: “Most of us have gotten less to get
by on. But one of the most worrying things is that productivity growth

in the industry is falling, warns researcher Adne Cappelen...”

2019Q3 Demand -0.62  Braathen: “Nobody is more affected by flight shame than I am”: “Per
G. Braathen (58) must lay off one third of the employees at the Swedish
airline BRA because passenger numbers are falling short. He believes

that the resulting shame will spread to Norway...”

2020Q2  Supply -0.51 Op-ed: The crisis measures were necessary, but now people must return
to work: “Typically enough, there is now, in the start-up phase, criticism
of the emergency crisis measures taken during the shutdown phase. Even
so, other measures are needed mow. Several have criticized the crisis

measures for contributing to companies choosing to remain closed...”

The bar plot in Figure 8b shows that the selected articles from the Narrater-greedy
summation routine also tend to be among the articles with the highest probability score
when applying the default Narrater-RL policy function. Indeed, the median of the greedy
selections is above the 75th percentile of the top performing articles using the default
Narrater-RL model, and the two approaches selects the same article class in 65% of the
cases. Table A.1 (Appendix A) shows that this statistic increases if a more RMSE oriented
reward function is used. Thus, narrative attribution is affected by user preferences, but
still fairly consistent across the different hyperparameter specifications considered here.

An advantage with the Narrater-RL-based approach is that it naturally delivers prob-
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Figure 8. Figure 8a reports a scatter plot of the RMSEMargin and ClassSharpness measures. Quadrants,
illustrated using red and gray broken lines, are defined using the median for the in- and out-of-sample
periods, respectively. Values are aggregated to yearly averages for visual clarity. See the text for further

details. The black bars in Figure 8b report the relative rank, defined as 1 — ;;: :11, between articles

selected by the Narrater-greedy and Narrater-RL routines, where r;_ is the rank of the Narrater-greedy
selection in the probability distribution of the default Narrater-RL routine. The blue lines report 1 — 7:[,55,
where the broken line is the raw estimate and the solid line is smoothed with a 4-period moving average

for visual clarity. The white areas are time periods with data not seen during training.

abilistic policy weights that quantify the decisiveness of each choice. The blue line in
Figure 8b reports 1 — H,,, where H,, = H,, /log(| A,

siveness across time. There is relative high entropy in the early 2000s, following the Great

), as a measure of attribution deci-

Financial Crisis (GCF) and the oil-price slump in 2014, and also in the period before and
after Covid-19.

Another favorable property of the probabilistic approach is that it also enables period-
level “abstractive” summaries. Figures 9a—9f provide an illustration where headline words
are weighted by an article’s selection probability and rendered as traditional word clouds.
We focus on six dates/periods aligned with canonical business cycle episodes. Because
entropy varies over time, the sharpness of narrative attribution likewise fluctuates, as
evident in the figure, but the relevance of the narrative attribution is striking: The model
automatically surfaces the mid-2014 oil-price slump, the Brexit referendum, the China-
U.S. trade war, Covid-19 and remote work, and the inflation surge towards the end of the

sample.

6.4 The oil market and alternative model configurations

To demonstrate the flexibility of the framework, and how it is easily adaptable and capable
of addressing diverse user needs, we also test it in a setting where the goal is to capture

global oil market dynamics as identified in Baumeister and Hamilton (2019), hereafter
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Figure 9. Figures 9a—9f report traditional word clouds derived from words in news headlines weighted

by the article’s selection probability using the default Narrater-RL.

referred to as BH, and in two other, less structural, configurations exemplifying news
topic identification and mixed-frequency data processing. In the interest of preserving
space, the former application is presented below, while the two latter are relegated to
Appendix C.

In the oil market application we use the monthly data, structural model, and identi-
fication restrictions from BH to generate synthetic training data and then estimate and
apply the implied Narrator-oil model as generically described in Sections 4.4 and 6.1,
respectively. This experiment replaces GDP predictions with oil price predictions, but
keeps the maintained assumption that news articles for the current period (month) are
available whereas the oil price is not. I.e., in the Narrator-oil model the decoder input is
the monthly growth in the real price of oil and the output its structural decomposition.
The reminding time series features enter the time series encoder, with D = 3.12 BH iden-
tify five shocks; oil supply, economic activity, oil consumption demand, inventory demand,
and a measurement error we label as noise. For simplicity we combine the oil consumption
and inventory demand shocks such that R = C' = 4. Training and validation data are

generated with the simulation scheme in Section 4.1, with minor modifications described

2Following BH, and data provided here https://sites.google.com /site/cjsbaumeister /research, we use global
crude oil production, an extended version of the OECD’s index of monthly industrial production, a proxy
for OECD crude oil inventories and measure the real price of oil using the U.S. refiner acquisition cost
deflated with U.S. inflation.
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Figure 10. Figure 10a reports the real-time estimates of 5/%2 41,reg 1mplied by all incoming news and
aggregated into the sum of all its fundamental components. Figure 10b reports the class share of ¢ and
i articles across the out-of-sample evaluation period. Figures 10c—10e report traditional word clouds

derived from words in news weighted by the article’s selection probability using the RL-based policy.

in Appendix C.2. As before, no post 2010 data is used for training or simulation, but
preserved for the out-of-sample evaluation.

Table C.2 (Appendix C.3) documents that the oil-based model retains the strong classi-
fication performance on the evaluation data as previously documented for the benchmark
model. Figure 10 summarizes key results from the out-of-sample experiment, were we
start by focusing on the results from the greedy policy. First, processing all incoming
news stories results in a large outcome space. However, the predictions implied by the
selected news are relatively well aligned with the actual outcomes and the correlation
between these predictions and (oil) news sentiment is above 0.9. When more formally
evaluated the oil price predictions are not significantly different from those obtained from
a Random Walk (RW), which is a hard benchmark in this context (Figure A.7a Ap-
pendix A). Second, close to 70% of the news articles in this corpus are “irrelevant” for
the price of oil, and classified as noise. In contrast, for the articles actually selected by
the greedy policy the majority are either supply or demand related. I.e., the proposed

filtering framework enables relevant signal extraction even in high noise environments.
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In terms of narrative attribution, Figure A.8 (Appendix A) shows that the predicted
structural decompositions tend to fall well within the bounds, and in-sample estimates,
of the underlying SVAR used by BH. However, even though the time series data likely
disciplines the structural decompositions and average classification scores, we observe that
the narrative content of the selected articles often is less convincing with too much focus on
domestic developments. Although Norway is a major oil exporter, the high-dimensional
action space and the fact that DN is a Norwegian focused general business news outlet,
are likely explanations.

To improve narrative attribution we thus turn to the full RL-based policy which allows
for including narrative prior information. Here this is supplied using the text sequence
protoypes used when creating classified training data (Appendix C.2) and allocated across
time in line with findings in BH, where oil price fluctuations in the period used for policy
estimation are driven equally by oil supply and economic activity disturbances. In addi-
tion, we impose a hard relevance gate on the candidate action set, retaining only articles
that contain the words oil or international. This restriction is deliberately minimal and is
intended solely to exclude clearly irrelevant domestic business news rather than to inject
additional narrative structure.®

The full RL-based policy performs on par, or better, than the greedy approach in
terms of predictive accuracy (Figure A.7a), tilts the average classification scores somewhat
towards the narrative prior (Figure 10b), and retains a large overlap with the (in-sample
generated) structural decomposition implied by the BH model (Figure A.8). Applying
the estimated policy function also improves the model’s ability to produce meaningful
narrative attribution. This is illustrated in Table 4, which report the predicted class,
sentiment, and headline and text of news stories with the highest probability using the
RL-based policy for dates with relatively low entropy (Figure A.7b Appendix A). Similarly,
focusing on three periods with large changes in the price of oil, and article content weighted
by their selection probability, results in sensible period-level “abstractive” summaries
(Figures 10c—10e): Negative international economic activity focus in late 2014, a surprising
change in Saudi leadership and potential strategic rethink in the spring of 2016, and a
notable change in climate focus and its potential consequences for energy markets in early
2019. Still, we conjecture that the quality of the narrative attribution could be further

improved using more targeted text data input.

13In terms of hyperparameters, we let Ay = 1.2, Ap = Ap = 0, but keep the reminding parameters as
defined in Table E.1 (Appendix E.2). To limit the computational complexity associated with policy
optimization over long time series and large action sets, the policy is trained on monthly data covering

the period 2005M1 to 2009M12 - preserving post 2010 data for out-of-sample evaluation, as before.
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Table 4. The headline, first sentences, date, class, and sentiment of selected news stories using the

RL-based policy. The news texts are translated from Norwegian to English using GPT-4.5.

Date Class Sent. Headline and text

2012M1  Econ. act. -0.18 A Very Dangerous Phase: “Warning: The global economy has entered
a very difficult and dangerous phase, the World Bank warns. Emerg-
ing economies with strong growth are cautioned against believing they
are immune to the debt crisis in parts of the EU region and the United
States...”

2013M6  Oil supply 0.20  Secured a Major Contract: “The oil exploration company EMGS has
signed a contract worth 600 million Norwegian kroner with one of the
world’s largest oil companies. The contract is the third largest in EMGS’s

history...”

2014M11 Econ. act. -0.39 Weak Report: “The export and oil service supplier industry expects
weaker growth going forward than it did three months ago, according
to Norges Bank’s regional network survey... FEconomists believe the re-

port is clearly weaker than Norges Bank had anticipated...”

2015M6  Oil supply 0.16  OPEC Mowves in Unison: “Although the oil price is forty percent below
the level at the same time last year, OPEC countries chose to keep pro-
duction unchanged at their meeting in Vienna. OPEC and Saudi Arabia
are no longer trying to support prices by shutting off oil taps. OPEC will

no longer act as a swing producer...”

2016M11 Oil supply 0.12  Maintains the Forecast: “OPEC is keeping its estimate for global oil
demand in 2016 unchanged at 94.40 million barrels per day...”

7 Conclusion

Human perception and decision-making are inherently multimodal; traditional empirical
models in economics, however, are largely unimodal. In macroeconomics, for example,
modern time-series tools deliver high-quality business cycle estimates and structural de-
compositions of its fluctuations, but typically lack a narrative interpretation that textual
data might help provide. Against this background, we explore how recent advances in
deep learning and NLP - specifically, encoder—decoder Transformer architectures - can be
used to construct a multimodal supervised filter for narrative attribution.

While inherently domain agnostic, we call our proposed model the Narrater and
demonstrate how it jointly processes (news) text and (macroeconomic) time series via con-
textualized embedding representations. At the core of this framework is the Transformer-
based attention mechanism, which integrates modalities with potential different frequen-
cies and reporting lags while preserving temporal context. This makes the architecture

well suited to macroeconomic settings with asynchronous and high-dimensional informa-
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tion. In the process, we show how the model can be used together with Reinforcement
Learning techniques to produce summaries of the high-frequency and high-dimensional
flow of textual information encountered in real-word contexts.

Empirically, on Norwegian data, the model yields structural decompositions and narra-
tives that align with well-known historical episodes; it also attains quasi real-time predic-
tive performance on par with, or modestly better than, competitive benchmarks. Permu-
tation tests, ablations, and hyperparameter experiments show that both data modalities
matter, larger embeddings improve fit within resource limits, fine-tuning the language
encoder is critical, and multi-task learning improves model performance. In additional
applications we demonstrate how the framework also can be used to produce reasonable
filtering of international oil market dynamics and less structural topic extraction.

Our contribution is foremost methodological: a general multimodal supervised filter-
ing framework for measurement and narrative attribution. We do not claim model-free
identification of causal relationships from multimodal data. Rather, we attribute narra-
tives consistent with a maintained structural view. This is both a strength and limitation.
Limitations include reliance on labels and dynamics derived from underlying structural
constraints. However, this is also the model’s strength because it makes the framework
general and easily adaptable to different user needs and structural views.

Going forward we envision numerous improvements and extensions based on this type
of model architecture, which also can be useful in other settings where text (or other

unstructured streams) co-evolves with numeric time series.
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Appendices for online publication

Appendix A Additional results

Table A.1. Correspondence and correlation between Narrater-greedy and different implementations of
Narrater-RL; default, only RMSE rewards (Ar = Ay = Ap = 0), and only RMSE and NPRIOR rewards
((Ar=Ap =0).

Default Only RMSE rewards Only RMSE and NPRIOR rewards
Class/selection 0.65 0.72 0.70
Business cycle 0.97 0.95 0.95
(a) Business cycle quarterly and ex-post (b) Zoomed-in

The Narrater w/fundamental only (final, quarterly)
O The Narrater w/fundamental only (real-time, quartetly)

I I I I I 1.6
1990 1995 2000 2005 2010 2015 2020 2016 2017 2018 2019 2020 2021 2022 2023

Figure A.1. The graphs report the real-time (filtered) estimates Q(Tl} H1reg together with the smoothed

versions gjgl)Tf H1reg- The white areas are time periods with data not seen during training and validation.

46



(a) Nowcasting performance (b) Error differences
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The Narrator/The Narrator with noise text
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Figure A.2. Figure A.2a reports the predictive performance of the Narrater relative to the DFM, when
the former predictions are constructed as averages of 1 - 90 daily (x-axis) predictions. Figure A.2b reports
the cumulative squared prediction error difference between the Narrater and a version of the model using
a generic and recurrent text sequence. A falling value implies a relative Narrater improvement. The
shaded areas are 95% confidence intervals of differences in predictive performance, computed following
Diebold and Mariano (1995) with HAC corrected standard errors.

(a) Sentiment quarterly (b) Sentiment intra-daily

Text sentiment (real-time, quarterly)
Business cycle (real-time, quarterly)

Text sentiment (real-time, intra-daily)

1 1 1 I I
2000 2005 2010 2015 2020 -0.8 3 3 ! :
2000 2005 2010 2015 2020

Figure A.3. Figure A.3a reports the normalized quarterly mean of the Narrater’s real-time senti-
ment predictions. Figure A.3b reports the quarterly real-real time estimates of y(TZf) +1,sent implied by all

incoming news. The white areas are time periods with data not seen during training and validation.
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Supply

DFM admissible set

Narrater-greedy

= = = Narrater-RL

15 . . . . . 2 . . . . .
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Figure A.4. Real-time (predictive) demand and supply decomposition produced by the Narrater to-
gether with the similar objects produced by the DFM, described in Appendix B. For the DFM these are
ex-post estimates (because they are computed with data for the whole sample available). Since the DFM
is identified using sign restrictions, we report the set of historical shock decompositions associated with
the impulse response functions fulfilling the sign restrictions, i.e., the admissible set. The white areas are

time periods with data not seen during training and validation of the Narrater.

(a) Demand fraction

(b) Supply fraction

022 1 035 1
Predicted demand fraction (quarterly) Predicted supply fraction (quarterly)
02 Business cycle (real-time, quarterly, RHS) Business cycle (real-time, quarterly, RHS)
05 03 0.5
0.18
016 0 025 0
0.14 —
0.12 -05 0.2 -0.5
4
0.1
1 015 -1
0.08
0.06 . . . I I 15 01 . . I I I 15
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020

Figure A.5. Fraction of news classified as either demand or supply using yE;J} 1 1.class and each quarterly

time segment. The white areas are time periods with data not seen during training and validation.
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(a) Error difference (b) Entropy

50 0.006
The Narrater-oil (greedy) /RW
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Figure A.7. Figure A.7a reports the cumulative squared prediction error difference between the
Narrater-oil and the RW benchmark. A falling value implies a relative Narrater-oil improvement. The
shaded areas are 95% confidence intervals of differences in predictive performance, computed following
Diebold and Mariano (1995) with HAC corrected standard errors. Figure A.7b reports 1 — 7:lts, where
the broken line is the raw estimate and the solid line is smoothed with a 4-period moving average for

visual clarity.

Class Sentiment
0.4r
Noise 021 w
ol
Supply -0.2
0.4
Demand 06 [ ” k

L L L 0.8 L L L
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Figure A.6. Quarterly real-time estimates of the class and sentiment of article 2. The white areas are

time periods with data not seen during training and validation.
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together with the similar objects produced by the SVAR proposed by Baumeister and Hamilton (2019).
For the SVAR these are ex-post estimates (because they are computed with data for the whole sample
available). Since the SVAR is identified using sign restrictions, we report the set of historical shock
decompositions associated with the impulse response functions fulfilling the sign restrictions, i.e., the

admissible set.

Appendix B Generating training data

As described in Section 4.1, synthetic training data is generated by simulating time series
data from an estimated Dynamic Factor Model and mapping text to time series using
the implied historical shock decomposition. Prior to this, the class and sentiment of a
large set of text data used for training and validation is automatically recorded using

embeddings. Below we provide the details of each step.

B.1 Business cycle simulations

To simulate synthetic macroeconomic data we assume a state space system where the
dynamics of the observable data are described by a set of latent state variables evolving

according to an autoregressive process. In particular, let x;* be a D x 1 vector of observed
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time series at time ¢;5 and f;,, a r x 1 vector of latent factors, such that:

Xifs - Aftts T Uy, U, N<Oa R)7

(17)
ftts - (P(L>ftts—1 + Hgtts’ Etys ™ N(07 Q)>

where A is a D x r matrix of factor loadings, u,,, is a D x 1 vector of idiosyncratic errors
(or noise), ®(L) is a lag polynomial matrix of autoregressive coefficients. R and Q are
the variance-covariance matrices of the error terms. We assume a diagonal structure for
R but not for Q. Moreover, we write the transition equation in (17) using the companion
form, and let ¢ denote the number of latent factors such that ¢ < r and the number of
lags of the factors is p (with p x ¢ = 7). Thus, &, is a ¢ x 1 vector of innovations (or
shocks) to the factors and H is a r x ¢ selection matrix.

For our particular experiment, we focus on two fundamental shocks (¢ = 2), namely
aggregate demand and supply shocks, and identify the latent factors as an aggregate
business cycle index and an underlying inflation measure. The factors are identified
following the unit identification scheme described in, e.g., Bai and Wang (2014), implying
that the upper left ¢ x ¢ block of A is the identify matrix. The relationship between
the reduced form errors and the structural shocks is given by &;,, = Ae,,,. Because
(Aey, )(Aey,,)" = Q, identification is achieved from E(ey e/ ) = I and by restricting
the elements of A using sign restrictions following Arias et al. (2018). Accordingly, A is
restricted such that the following relationship holds:

E:Ltts
827tt5

where a positive demand innovation moves prices and the business cycle in the same

+ +
+_

ed
tts] (18)

S
etts

direction while a positive supply shock moves these factors in the opposite direction.

To simulate training data from the model we first estimate it using the data described
in Section 4.3 and covering the sample 1986 to 2010. We allow for p = 8 lags and apply a
two-step estimation procedure, similar to in Bernanke et al. (2005): Common factors are
first estimated using Principal Components Analysis (PCA) and identified as described
above. Next, these factors are included in the VAR to estimate the time series dynamics
using OLS. Although sign restrictions only give set identification we focus on the structural
parameters associated with the median draw when sampling admissible impulse responses
following (18).

In total we simulate 60000 time series segments from the model. The length of each
segment is determined by the memory constraint of the Narrater, while we always remove
the first five years of simulated data to avoid dependence on starting values. Simulating
data directly from (17) produces synthetic data for the observable macroeconomic indi-

cators (x;°) and the latent factors, including the business cycle, where x| ; =t To
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Table B.1. The class and sentiment sequences and key-words used to generate benchmark embeddings
and Boolean search, respectively. For the key-word lists only the most relevant terms are reported. See
the text for details.

Narrative Text sequence Key-words

Demand “demand, sentiment, expectations” shopping, income, demand, consump-
tion, wage growth, tourism, interest
rate hike, wage settlement, transfers,

consumer loan,...

Supply “productivity, efficiency, innovation, technology, labor, strike, sanctions, reg-
technology” ulation, storm, sick leave, leave of ab-

sence, recruitment, overcapacity,...
Positive “positive, strong, good”

Negative “negative, weak, bad”

also produce synthetic data for the associated historical shock decomposition we use:
t
ftts = Z \I/jAetts_j7 (19)
j=0

where U, are the impulse response coefficient matrices (from the moving average (MA)
representation of the VAR), and consider the effect of each shock individually on the
implied decomposition of f; ;.. To also capture the noise component we use the element

in w,, associated with GDP growth.

B.2 Creating labeled text data

To create labeled text data that can be mapped to the simulated time series dynamics we
proceed in three steps. First we define a set of key-word sequences for the demand and
supply categories and good and bad sentiment. These are listed in Table B.1. Next, we
use the OpenAl API, and the text-embedding-3-small model, to produce embedding
representations of each of these benchmark text sequences. The intuition for this ap-
proach is that the embedding representations capture shared context, and thus captures
broader aspects and abstractions than the key-words themselves. At the same time, using
key-word-based sequences instead of, e.g., prototype sentences, reduces the risk of intro-
ducing unintended sentiment, framing, or policy biases in the categorizations. Finally, we
randomly sample text sequences from the DN news corpus described in Section 4.3, but
only consider news reported within the sample 1986 to 2010, and compute each sampled
article’s similarity with the benchmark embeddings.

More formally, let X denote the set of sampled news texts from the DN corpus (re-
stricted to 1986-2010), and let ¢ : 7 — R?Y be the embedding map induced by the
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text-embedding-3-small model. Likewise, let B = {b.}<7}' be the benchmark key-
word sequences used for categorization (e.g., demand and supply), and let B = {b* b~}
be the two sentiment benchmarks used for scoring. Then, forx € X andc € {1,...,C—1}

we define class-wise and sentiment similarity as:

se(x) = cos(d(z), d(be))  sT(x) = cos((x),o(b7)),  sT(z) = cos(d(x), (b)),

where, for any u,v € R%, cos(u,v) is cosine similarity. Then, to motivate distinct article

classes we set a class-specific threshold:
e = Qoo({sc(x):x€eX}), c=1,...,C -1,

where Qo o(-) denote the empirical 90th percentile, and assign an article = to a distinct
class if its top score clears that class’s threshold:

ct(x), if Ser(a)(x) > Ter(ry and ¢*(z) is unique,

y(x)class =

noise, otherwise,
with ¢*(z) := argmax, s.(x). Because 7y is the 90th percentile for each class, the majority
of sampled texts are labeled as noise.'* We have experimented with using different thresh-
olds, finding that if we do not define a relatively high threshold value, labeled articles will

be difficult to discriminate. Finally, independently of the class assignment, we compute:
sd(z) = st(z) — s (), Y(2)sene = tanh(sd(z)) € (-1,1),

and use y(x)sent as a measure of the article’s sentiment.

The procedure for creating labeled text data is simple and fast, and allows labeling
a large set of articles automatically. Arguably, the procedure could be improved and
refined in a number of directions. As an alternative we have also explored creating labeled
text data using a Boolean search-based approach. First, two domain-specific dictionaries
of Norwegian terms were manually compiled. One dictionary was intended to capture
aggregate demand news and the other aggregate supply news. The final demand dictionary
contains 72 unique tokens, while the supply dictionary contains 129. The 10 most frequent
words in each list are displayed in the last column of Table B.1. The full lists are available
upon request.

Second, each article was lower-cased, stripped of punctuation, and tokenised. We then
counted the number of hits from the demand and supply dictionaries for every article, pro-

ducing two variables demand_count and supply_count. An article is labelled as demand

14To avoid poor performance for the minority classes we use a weighted loss function when training the
model. In particular, a class is assigned a weight inversely proportional to its frequency in the train-
ing data. These weights are then used to scale the loss contribution of each training sample so that

misclassifying a minority class costs more than misclassifying a majority class.
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Figure B.1. Manual audit’s confusion matrix when a Boolean search-based approach has been used to

create labeled text data.

when demand_count> 0 and supply_count=0, and as supply when supply_count> 0
and demand_count=0. Articles that contain keywords from both lists or from neither list
are classified as noise. To avoid extremely long feature articles with many tangential
topics, we discard texts longer than 1000 words before applying the rule. The Boolean
approach therefore focuses on relatively short, single-topic news items.

Figure B.1 reports the results from the same type of manual audit as described in
Section 4.2, but now applied to the text data labeled using the Boolean search-based
approach. The overall accuracy is only 0.46, compared to 0.79 for the embedding-based
approach. Similarly, the results presented in Section 6 of the main paper are positive,
suggesting that the embedding-based labeling procedure is reasonable. We thus leave it
for future research to investigate potentially more adequate methods for automatically

creating labeled text data.

B.3 Simulation alternatives

To examine how training data assumptions shape the model’s use of multimodal infor-
mation, we have simulated alternative datasets that explicitly manipulate the sharpness
and noise in the text—time-series mapping. Instead of linearly linking the probability of
drawing each text class to the size of the historical shock decompositions, we apply a
temperature-controlled softmax with 7 = 0.2 or 7 = 0.6. In addition, for each 7 we in-
troduce noise by randomly breaking the link between the true class and the chosen text,
governed by r ~ Bernoulli(p,e) with p. = 0.98 or 1.00.

The additional rows in Figure 4 (Section 5.2) report permutation tests for models
trained on these alternative data. A clear pattern emerges: the sharper and more de-
terministic the mapping between shock decompositions and texts, the more predictive
performance deteriorates when the time-series input is permuted. Similarly, injecting

noise into the textual mapping shifts the model’s reliance toward the time series in the
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Figure B.2. Performance scores relative to the benchmark Narrater model. All model versions are

evaluated on the same validation data. A value below one indicates that the alternative model is better.

text-prediction tasks.

Drawing on the multi-head attention mechanism in the Transformer architecture, an
interesting avenue for future research is to train a single model directly on data generated
under varying assumptions. Such a setup would allow different attention heads to special-
ize in distinct regimes, potentially yielding a final model that is robust across a broader
range of data-generating processes. Speaking to this argument, Figure B.2 reports relative
predictive scores when all models analyzed in Figure 4 are evaluated on a test data set
containing random draws from all five simulation experiments (including the benchmark
described in Section 4.1). Interestingly, under these assumptions, the benchmark model
is worse than all of the alternatives (except in one case), and the best model would be

the one trained on data using the 7 = 0.6 and p,q = 0.98 assumption.

Appendix C The oil market and alternative model

configurations

To demonstrate the flexibility of the framework, and how it is easily adaptable and capable
of addressing diverse user needs, we also test it in a setting where the goal is to capture
global oil market dynamics as identified in Baumeister and Hamilton (2019), and describe
two other, less structural, configurations exemplifying news topic identification and mixed-
frequency data processing. The former application is presented in Section 6.4, with further

details below, while the two latter examples are fully presented here.

C.1 Topic modeling and mixed frequency data

To exemplify how the proposed framework can be used for news topic identification and
mixed-frequency data processing we consider two alternative configurations of the model:
the Narrater-topic and the Narrater-mixed.

In Narrater-topic we keep the benchmark setup but expand the number of text classes
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to C = 9. Both demand and supply are divided into four topical subclasses - pol-
icy/regulation, labor market, prices, and trade/energy. These subclasses are less “struc-
tural” than the originals but enrich the narrative content and show how the model can
also serve as a supervised topic model.

In Narrater-mixzed we highlight the architecture’s mixed-frequency properties and fo-
cus on extractive summarization. Here all text sequences s; are intra-quarterly, but only
one is informative for predicting the business cycle, while x}° is observed monthly. Be-
cause text and time series are non-overlapping, this model predicts only the latent busi-
ness cycle index rather than reconstructing the full history, but enables efficient filtering
of high-frequency text via cross-attention, with article selection replacing the benchmark
classification task. As such, the RL approach adopted for news summation becomes re-
dundant for this model specification. Allowing simultaneous classification, selection, and
overlapping time windows is possible but would require substantially more memory.

To keep the computational burden and memory requirements for the Narrater-mized
reasonable we only consider 7' = C' = 10, and since the model does not give any structural
decomposition of the business cycle in this configuration R = 1. Moreover, since we do
not assume any potential temporal relationship between the C' articles, equation (2) is
removed and the model head in (10) is attached to the model’s text encoder. Thus, the
sentiment of each of the C' articles is predicted, but only one article is relevant for the
business cycle at time T + 1. To facilitate this type of selection we further let the text
classification head be a direct function of the time-series-text-embedding cross-attention
scores.

Letting qg denote the 1 x d decoder query vector for time period Ty + 1, the scores

are:

fKtat”
a = softmax <q2—> c R>T, (20)

and a replaces h{3) in (9). This prevents the network from mixing the information in the
two data modalities before identifying the relevant text. In contrast, using the aggregated
attention output from (21) as input for the text selection head would imply that the model
looses the individual identity of the texts before trying to select the correct one. As before
Ty = 40 quarters, but T;; = 120 monthly observations, and we assume that ¢, = 5 + 1

such that (realistically) monthly observations are available for the current quarter.

C.2 Generating training data

Training and validation data are generated with the simulation scheme described in Sec-
tion 4.1 and Appendix B, with minor modifications described below.

To create simulated time series data for training the Narrater-oil model we exchange
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the DFM with the SVAR specification proposed by Baumeister and Hamilton (2019).
The reduced form representation of the model is used to generate simulated time series
which are then decomposed into the historical shock decomposition for the real price of
oil using the model’s structural parameters. For estimation of model parameters we used
data provided here https://sites.google.com/site/cjsbaumeister /research, but truncate the
sample to cover the period 1958 to 2009. For comparison, we also estimate a version of
the model using data ending in 2019, which is the last period in the publicly available
dataset.

To create labeled text data for the Narrater-oil and Narrater-topic experiments we
follow the same type of embedding-based labeling procedure as before. We first define
text sequences for each of the oil market shocks and topic categories of interest. These
are listed in Table C.1. Then, for each sampled text sequence we again use the “text-
embedding-3-small” model to obtain its embedding representation and compute the cosine
similarity with the benchmark embdeddings. Finally, we attach a new class label for each
text depending on the index of the maximum cosine similarity score and the original
classifications. For the Narrater-topic model this implies that we obtain four subclasses
for both “demand” and “supply”.

For the Narrater-mized experiment we construct a mapping between the text and time
series data so that the sentiment of the true text is as close to tanh(nyH,,«eg) as possible,
where yr, 41 ¢4 18 the business cycle index. Then, to construct a set of false articles for
each training and validation observation we simply select the C'—1 articles whos sentiment
differs the most with the true sentiment. This clearly simplifies the classification problem.
For practitioners wanting to apply this model a potentially more realistic approach for
creating the set of false articles could be to randomly select articles from the same real
word time index as the true article.

Monthly time series data are sourced to reflect the quarterly time series when possible.
We use the monthly frequency of U, CPI, SPREAD, and OIL, while the reminding vari-
ables are “replaced” by (log) yearly changes in monthly industrial production, retail sales,
and money growth, and the level of OECD’s business tendency survey for Norway. Then
to simulate monthly x° time series data we first use PCA and the monthly variables
to compute one common factor, factor loadings, and the variance of the idiosyncratic
noise. Because the monthly variables have somewhat different sample lengths, we use
data covering the period 1993 to 2010 to derive these objects. Next we simply assume
that the mean of the monthly factors are equal to the quarterly business cycle index from
the the original training data, and use the estimated factor loadings, the variance of the
idiosyncratic noise, and the normal distribution, to simulate monthly observations that

are consistent with the dynamics of the original quarterly business cycle index.
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Table C.1. The table reports the text sequences used to generate the oil- or topic-based embeddings.
See the text for details. Note that terms or translated from Norwegian to English, and that Norwegian
frequently combines two or more words to create a single new word with a specific meaning. E.g.

“monetary policy” is one single word in Norwegian.

Narrative Text sequence
Narrater-oil Oil supply “oil, petroleum, OPEC, supply, production, surprise”
Economic activity “global, economy, activity, expectations, forecast, growth”

Oil consumption demand  “oil, petroleum, risk, inventory, speculation, demand”

Narrater-topic  Policy /regulation “interest rate, central bank, budget, tax, requlation, mone-

tary policy, fiscal policy”

Labor market “unemployment, employment, jobs, permits, wage, labor
market”
Prices “inflation, consumer price indezx, cost of living, price level,

price development”

Trade/energy “export, import, trade, trade balance, oil price, energy, war,

geopolitics”

Table C.2. Alternative model specifications and validation data performance. For the Narrater-topic
and Narrater-mized models the sentiment (Sent.) and business cycle (BusC.) tasks are similar while the

classification task is different.

Narrater Narrater-topic Narrater-mized Narrater-oil
Class/selection (accuracy) 0.99 0.99 0.99 0.99
Sent. (RMSE) 0.02 0.03 0.03 0.03
BusC. /Oil price (RMSE) 0.18 0.18 0.19 0.5

C.3 Results

Table C.2 reports the different model configurations’ performance on the validation data.
Of main interest here is the classification task. As discussed earlier, the benchmark model
achieves close to perfect accuracy. Although the alternative model configurations per-
form different classification (Narrater-topic and Narrater-oil) or text selection (Narrater-
mized) tasks, their accuracy is also close to one, exemplifying how these model configu-
rations can efficiently identify, e.g., user-defined news topics or be used to automatically
perform accurate extractive news summaries.

For regression tasks, all alternatives perform worse than the benchmark in predicting
sentiment, and the Narrater-mixed also underperforms on the business cycle. This decline
is not due to poor handling of monthly time series - Figure C.1 shows that cross-attention
assigns weight across the full monthly sequence - but likely due to the removal of structural

decomposition (supply, demand, noise) in the output which previously provided implicit
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Figure C.1. Attention scores from equation (6) and the Narrater-mized model for period Ty 4+ 1 and
one particular validation set observation. The four lines reflect the different attention heads, while the

x-axis reflect the sequence length of the monthly data.

regularization via multi-task learning (Caruana, 1997; Ruder, 2017) - as documented in
Table 2.

Finally, to illustrate the Narrater-topic output more explicitly, Figure C.2 reports the
fraction of articles classified as one of the four topics across time when the model is used to
process the non-synthetic data: We do, for example, observe an elevated focus on politics
and regulations following the introduction of inflation targeting and the EU enlargement
in the early 2000s, a larger fraction of labor market oriented news during turbulent times
such as the financial crisis and Covid-19 period, and a substantial increase in articles

about prices and inflation towards the latter part of the sample.

Appendix D Transformers and BERT

In the proposed architecture we combine a BERT language encoder with a Transformer-
based encoder-decoder structure for processing time series data. Below we shortly describe

the general Transformer block in a neural network and the BERT structure.

D.1 The Transformer

A Transformer block, sometimes called a Transformer encoder layer, is a key computa-
tional unit originally introduced in the Transformer architecture (Vaswani et al., 2017),
which has since become foundational in a wide range of sequence modeling tasks.

At its core, a Transformer block processes an input sequence representation through
a self-attention mechanism, followed by a position-wise feed-forward network (FFN). The
input to the block is first normalized using a layer normalization operation. Let the input

embedding sequence be represented as a matrix X € R™"*? where n is the sequence length
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Figure C.2. Fraction of news articles, aggregated to quarterly frequency, classified by the Narrator-topic
model to be about policy/regulation, the labor market, prices, or trade/energy. The white areas are time
periods with data not seen during training and validation.

and d is the feature dimension. After applying layer normalization, a so-called multi-head
attention module computes a weighted sum of values across positions, enabling each ele-
ment to attend to other relevant elements in the sequence. By allowing for multiple heads,
the model can focus on information from different representation subspaces at different
positions, capturing a richer variety of dependencies compared to single-head attention.
This is achieved by projecting the input X into three matrices: queries Q = XWg, keys
K = XWg, and values V = XWy,, where W, W, Wy, € R¥% are learnable pa-

rameters, and d, = d/h for h attention heads. The scaled dot-product attention is then

computed as:

. QK'
Attention(Q, K, V) = softmax V. (21)
Vi

For multi-head attention, this operation is performed h times in parallel and the results
are concatenated to form a d-dimensional output. A residual connection is added to the

layer input, and the output is again normalized.

In many sequence modeling settings, attention is required to be causal, which in
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this setting implies that each element in the sequence can only attend to its current
and preceding positions, not future ones. Causality is typically enforced by applying a
masking operation to the attention matrix, ensuring that QKT entries associated with
future positions are set to —oo before the softmax is applied. This restricts the flow of
information and prevents “peeking” into the future, a property critical for tasks such as
language modeling or time series prediction. In contrast, non-causal (or bidirectional)
attention imposes no such constraints, allowing each element in the sequence to attend
to both past and future elements in the sequence, which can be advantageous for tasks
like machine translation or masked language modeling where full contextual information
is available.

Following the attention layer, a FFN is applied to each position independently. The
FFN typically consists of two linear transformations with a non-linear activation function,

such as ReLU, in between:
FFN(Z) = max(0,ZW; + b; )W, + by, (22)

where Z € R™? is the output of the multi-head attention module, and W; € R¥*4s,
W, € Ru*4 by € RY, and by, € R? are learnable parameters. Here d ¢ is often chosen
to be larger than d to increase representational capacity. As with the attention layer, the
FFN output is combined with a residual connection and layer normalization. Thus, each
Transformer block systematically refines the hidden representations through attention-

based context aggregation and non-linear transformations.

D.2 BERT

BERT is a widely-used Transformer-based model for natural language understanding
tasks. Introduced by Devlin et al. (2018), BERT leverages a deep stack of Transformer
encoders to produce rich, contextualized embeddings of input tokens. Unlike previous
popular models that relied on a unidirectional context, or did not use an attention mech-
anism at all (Mikolov et al., 2013; Pennington et al., 2014), BERT employs bidirectional
attention, allowing each token to attend to all other tokens in both directions. This
property is achieved through a masked language modeling pre-training objective, where
a certain percentage of tokens are masked and the model learns to predict these masked
tokens from their surrounding context.

One of the primary strengths of BERT-like models is that they are provided pre-trained
on large-scale text corpus, but can be fine-tuned for a broad range of downstream tasks
with minimal architectural modification, often achieving state-of-the-art or near state-of-

the-art results.'® This transfer learning capability stems from the generality and richness

ISBERT was originally trained on a corpus which included the English Wikipedia (approximately 2.5 billion
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of the pre-trained token representations, allowing developers and researchers to focus on
task-specific data without the need for extensive task-specific model architectures. As a
result, BERT has seen widespread adoption and has significantly influenced the direction
and methodologies of NLP research.

BERT is provided in several model sizes to accommodate different resource constraints
and performance targets. For example, BERTgasg consists of 12 Transformer encoder
layers, each with 12 attention heads and a hidden size of 768 dimensions (totaling roughly
110 million parameters). BERTpargE, in contrast, uses 24 layers, 16 attention heads,
and a hidden size of 1024, leading to about 340 million parameters. These models can be
further adapted or distilled into smaller variants, enabling more efficient deployment on
resource-limited devices.

Here we utilize BERTrny (Turc et al., 2019), which present a family of more compact
BERT models that trade off model size and computation for slightly reduced accuracy, al-
lowing for more efficient deployments while still maintaining strong performance on many
NLP tasks. In particular, the BERTpny version we use consists of only 2 Transformer
encoder layers, each with 4 attention heads and a hidden size of 128 dimensions (totaling
roughly 4 million parameters).

In terms of processing a text sequence, BERT Ty first uses the same WordPiece
tokenizer as the original BERT model.'® Let a given input sequence consist of n tokens:
(wy,ws, ..., w,), where each token wj; is drawn from a fixed vocabulary V. Then BERT
first maps these tokens into a sequence of token embeddings E € R"*? where d is the
hidden dimension and E is a learnable parameter matrix. In addition to token embeddings,
BERT uses learnable position embeddings P € R™*? to encode the positional information

of each token. Thus, each token w; is represented as:
X; = €; + Pi,

where e; and p; are the i** row vectors of E and P, respectively. Stacking these vectors
for all i € {1,...,n} results in the input embedding matrix X € R™“, which serves as
the input to the first Transformer encoder layer of BERT.

To further prepare the input, and facilitate batch-processing, each input sequence of
length n is typically padded to a fixed length N > n by appending special padding tokens.
A corresponding binary attention mask is then defined and ensures that the model only

attends to non-padding tokens. In BERTiny NV = 512 is the maximum sequence length,

words) and the BookCorpus (approximately 800 million words).
16This tokenizer splits input text into subword units based on statistical properties derived from large-

scale text corpora. By applying the same WordPiece vocabulary and tokenization strategy, BERT TNy
maintains compatibility with BERT’s input format and leverages the same robust subword segmentation

to effectively handle a broad variety of words, including rare and out-of-vocabulary terms.
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and sequences that are longer than this will automatically be truncated. In addition to
padding and masking, BERT also incorporates special tokens into the input sequences.
For a single sequence or a pair of sentences, BERT prepends a [C'LS] token at the start
of the sequence and inserts a [SFE P] token after each sentence. The token [C'LS] provides
a convenient vector representation for the entire input sequence, and each [SFE P] helps
the model distinguish between sentence boundaries. For our purpose, the former [CLS]

token is important because it facilitates sequence classification.

D.3 Transformers for time series

Originally developed for natural language processing, the Transformer architecture has
increasingly been applied to time series modeling due to its ability to capture long-range
dependencies without relying on recurrence. Indeed, by leveraging self-attention mecha-
nisms, Transformer-based models have demonstrated strong performance across a variety
of time series tasks (Wen et al., 2023).

Key challenges in applying Transformers to time series include encoding temporal
structure and handling multivariate data. For the former, a common approach, adopted
here, is to treat time steps as discrete tokens and apply either fixed or learned positional
embeddings, analogous to token position encoding in NLP models. In particular, let x{° €
RP denote a D-dimensional vector of macroeconomic variables at time ¢, € {1,..., T}

Each vector is then projected into a d-dimensional embedding space via:
ey, = Wiy, + b, (23)

where W;, € R™P and b,, € R? are learned parameters. The resulting embeddings

are stacked into E** € R=*4 and serve as the input sequence to the Transformer, with

positional encodings added in the usual manner.'”

7To improve temporal awareness, additional features, such as day of the week, month, or other seasonal
indicators, can be incorporated into the embeddings, either through addition or concatenation (Lim et al.,
2021). In settings with long sequences, ”patching” techniques, inspired by computer vision, can also be
employed. Here, consecutive time steps are grouped into segments (patches), reducing the sequence
length seen by the model while preserving intra-patch dependencies. We leave exploring the adequacy of

these model designs for macroeconomic modeling for future research.
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Appendix E Reinforcement Learning for Narrative

Attribution

E.1 Connection to optimal control

Formally, the out-of-sample narrative attribution problem can be cast as a finite-horizon
Markov decision process with state s;, action a; € A;, and reward (s, a) given by (12).
Full RL with optimal control would optimize long-horizon returns, but with Np > 2000
this is infeasible. We therefore adopt an approximation with short rollouts of horizon H,
inspired by classical work in stochastic control (Bertsekas and Tsitsiklis, 1996; Bertsekas,

2019). A basic (hard) rollout estimator for the state—action value is:

~

QH(ST, a) = E

H-1
Z ’Yh 7"T+h(3T+h, aT+h) ‘ ar = @] ) (24)
h=0

with discount factor ~.

Standard optimal control relies on the hard Bellman recursion:
Q*(s,a) = r(s,a) +vEgy [mz/mx Q* (s, a’)] :

However, in high-dimensional settings the max operator easily induce brittle policies and
poor exploration. Entropy-regularized or “soft” control instead augments reward with
an entropy or KL-to-prior bonus (Todorov, 2006; Kappen, 2005; Ziebart, 2010; Haarnoja
et al., 2018), yielding:

Q*(s,a) = r(s,a) + yEs V()] (25)
V*s) = 7 logZeXp{%Q*(s,a’)}, (26)

with temperature 7 > 0. The induced soft-optimal policy is:

exp{%Q*(s,a)}
S vexp{iQ*(s,a’)}’

which recovers the hard Bellman policy as 7].0.

(als) =

To align rollout targets with (27), we map truncated returns to probabilities via a

Boltzmann transform:
gr(a) o exp{% @H(ST,a)}. (28)

Equation (28) is the finite-horizon, rollout-based analogue of (27), replacing the exact Q*
with the H-step estimator (24).
Training then projects the policy onto these rollout targets using the KL-regularized

objective (15), in line with trust-region methods (Peters et al., 2010; Schulman et al.,

64



Table E.1. Hyperparameters and baseline values used in training.

Hyperparameter Baseline value Hyperparameter Baseline value
Learning rate (n) 5x 1073 Discount factor (y)  0.97

Softmax inv. temp. (8) 1.6 Rollout horizon (H) 3

Target temp. (7;) 0.8 Entropy weight (Ag) 0.01

FUND weight () 0.8 KL weight (Akr,) 0.1

NPRIOR weight (Ay) 0.1 Steps of training 250

PER weight (Ap) 0.1 Refresh interval 5 iterations
Continuation strategy  deterministic (max) | Eval. metric expected reward

2015; Abdolmaleki et al., 2018). With ¢, of the form (28), the optimizer of (15) is driven
toward the soft-optimal policy (27), with my acting as a stabilizing prior and Ay controlling
entropy regularization.

Since @ g is truncated, noisy, and expensive to recompute for every (s, a) and period
T, we use a parameterized softmax policy mg(a | s) = softmax,{3 ¢(s,a) 0} as a compact
approximation class. This projects noisy rollout targets onto a smooth policy, generalizes
across states via features, and amortizes rollout costs so that deployment does not require

recomputing @ g If the class is sufficiently rich, the projection recovers (27) exactly.

E.2 Application details and practical considerations

The training algorithm is outlined in Algorithm 1. We adopt a two-timescale training
scheme common in RL: policy parameters are updated every iteration, while the envi-
ronment is refreshed and new state caches are generated only every few iterations. This
setup, often referred to as using multiple epochs per batch or semi-on-policy training,
reduces computational cost while still providing stable learning. Similar strategies are
standard in policy gradient and fitted policy iteration methods.

Table E.1 lists the parameters used for estimation. The temperature settings are tuned
to avoid large jumps in the learning curves while the weights in the objective function
(15) allow for a small degree of smoothing and conservatism. The weights in the reward
function (12) reflect user specific preferences, and do in our benchmark application reflect
a high weight on fundamental news and relatively little weight on the narrative prior and
persistence.

We implement policy learning on slates of candidate articles rather than on the full
set of available texts. This ease the computational burden: each period typically contains
thousands of articles, making it intractable to evaluate every candidate in each policy

update. By restricting attention to a smaller, representative slate - obtained through
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Algorithm 1 Reinforcement Learning for Narrative Attribution

Require: Dataset {(A,, X!*)}/°_, and for ¢, = 1 initial states of (s1.7_1, X{:Tf—1)
1: Initialize policy parameters (6).
2: for iter =1,2,... do
3: if iter mod 5 = 0 then
4: Build a deterministic prefix trajectory {StS}Z}:l, with s;, = (ST, X7, Xéf), by
rolling forward with arg max, mp(a | sq.).
5: fort,=1to T, do

6: Compute approximate action values by H-step rollouts:
Q:.(a) < ROLLOUT(s;,, a,, H; 7).
7: Form target distribution:

e, (a) o exp{Qs, (a)/7}.

8: end for
9: end if
10: Update 6 by one step of (stochastic) gradient descent on:

Ts
L(0) =Y KL(g, || mo(-| 52,)) + At KL(mo(-| 51,) || mo(-| 52,)) + A H(mo(-| 5t,)) -
te=1
11: Convergence check: stop when £ or validation score stabilizes.
12: end for
13: return trained policy my(a | s;,) oc exp{B(¢(s:,,a)"6)}.

cheap pre-ranking heuristics using the Narrater-greedy approach - we can train efficiently
while still exposing the policy to diverse alternatives. Here we consider 100 articles in each
time period. 10% of these are among the best candidates according to the pre-ranking
heuristics and the rest are randomly selected from the full set of candidates. Learning
convergence is monitored by evaluating the policy function using expected rewards on
fixed slates - keeping the best performing parameter set for later application.

In the reward function accuracy is defined as:

RMSE (GDPﬁf)Tf, GDPl:Tf) = | % Y (GDPY), — GDPyur, ),

where GDP&Z;)TJ[ is the implied growth prediction when using article ar; as input to the
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filter in period T'. The narrative prior is measured using the ROUGE-1 score (Lin, 2004):

2> ey min (Count,(w), Count,(w))
lal + |al

NPRIOR(a, ar) =

Y

where |a| and |a| denote the total number of unigrams in the candidate and reference
article, respectively. We further define the degree to which the candidate article is funda-

mental as:
FUND(a) = o((pfunda(@) — Pnoise(a))/0.5),

Where Prund = 3 ce (demand,supply) P(€10) and o() is the sigmoid function. Thus, FUND(a)
favors articles with higher probability scores for the demand and supply classes. Finally,

we use cosine similarity to measure:
1
PER(a, Hr-1) = 5 jzl cos(e(a), hy)

where &(a) is the sequence embedding from (1) in period T for decision point t,, and h;
is the associated embedding for the t, — j periods earlier with J = 4. To further avoid
getting stuck in repeating noise, we gate the PER(a, Hy_1) measure by interacting it with

FUND(a) before computing the aggregate reward.

Appendix F LLM prompt

would like your help in forecasting the quarterly business cycle (F) for Norway alongside a more narrative account of this
prediction. I will provide you with historical data consisting of 38 quarterly values of structural supply,
demand, and noise series in a CSV file titled timeSeriesF_{number}.csv. These values are ordered chronologically from

I
s
—
<> earliest to latest, with the first and latest values representing time index 2 and 39, respectively. For each quarter, the
< sum of the supply and demand series correspond to the business cycle indicator. Your task is to predict the business cycle
s

indicator (F) for the next quarter (the 40th time index).

Additionally, I will supply you with data on 8 macroeconomic variables, consisting of 39 quarterly values, in a separate CSV
<— file, timeSeriesX_{number}.csv. These variables collectively form the basis for computing the business cycle indicator (F)

<~ for time index 1 to 39.

You will also be provided with 39 recent news stories as text data, formatted as a list of strings in a CSV file,
text_{num}.csv. Each news story is associated with one quarter, ranging from time index 2 to 40, and can assist you in
inferring the historical correlation patterns as well as making your business cycle prediction for time index 40. The
class of each text is either **supply**, #**demand#**, or **noise**, and there is statistical mapping between the
structural three-part decomposition of the values in timeSeriesF_{number}.csv and the classes and sentiment of the texts.
To help you understand this mapping, the true class and sentiment for each of the texts for time index 2 to 39 is provided
in the file classSentiment_{number}.csv. These values are ordered chronologically from earliest to latest, with the 39th

value representing the most recent quarter for which we have data. The classes are identified using numbers, with

A

demand=1, supply=2, and noise=3.

Alongside predicting the business cycle indicator (F), please also provide:

1. An economic sentiment prediction (S) for the 40th quarter, expressed as a value between -1 and 1, reflecting the overall
< economic sentiment which in this context is highly correlated with the business cycle indicator.

2. A classification (C) of the primary driving force behind the economy for the 40th quarter, categorized as one of the

< following:

* **xSupply**: Economy driven primarily by supply-side factors, defined here as residing in the semantic territory of

< "technology, innovation, productivity".

* **xDemand**: Economy driven primarily by demand-side factors, defined here as residing in the semantic territory of "demand,
<~ preferences, sentiment".

* *xNoise**: No specific supply or demand shocks dominate the economic conditions this quarter.

Your predictions should be informed by the relationship implicit in the historical data among macroeconomic variables, news

<> stories, and the business cycle indicator.
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Please provide your predictions structured clearly in the following JSON format:

"~ json
{
"F": <predicted business cycle indicator value>,
"S": <predicted economic sentiment value between -1 and 1>,
"C": "Supply" | "Demand" | "Noise"
¥
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