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ment Learning to produce structurally coherent summaries of high-frequency news
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1 Introduction

“It would be nice to point to recognizable events, of the type that is reported by news-

papers, as the source of economic fluctuations, rather than to residuals from some

equations.” Cochrane (1994, p. 298)

A fundamental problem in macroeconomics is identifying the underlying drivers of eco-

nomic fluctuations and measuring their broader dynamic implications. Empirical research

typically addresses the question using a particular statistical model, with the vector au-

toregressions, introduced by Sims (1980), and later extensions incorporating factor struc-

tures or larger systems (Stock and Watson, 1989; Bernanke et al., 2005; Bańbura et al.,

2010), having become standard frameworks. Within this tradition, however, the funda-

mental driving forces of economic fluctuations are residuals from the equations defining

the assumed statistical model. Although successful, this has motivated developments of

methods, starting already with Friedman and Schwartz (1963), that use text and histori-

cal sources to add narrative content to the statistical decompositions (Romer and Romer,

1989; Ramey, 2011; Stock and Watson, 2012; Antoĺın-Dı́az and Rubio-Ramı́rez, 2018).

This paper takes up the same theme from a different perspective, leveraging Transformer-

based neural architectures (Vaswani et al., 2017). These types of architectures under-

lie recent advances in Natural Language Processing (NLP) and Large Language Models

(LLMs), but are designed for sequence data and increasingly used to analyze time series

dynamics as well as multimodal learning using both text and time series variables (Wen

et al., 2023; Xu et al., 2023).

In particular, we explore how a Transformer-based architecture can be combined with

a user-specific economic view, or structural prior, to build a model called the Narrater,

which simultaneously processes text and time series data via joint contextualized repre-

sentations of the two data modalities. In line with the description above, the purpose

of this model is to provide a reliable estimate of economic fluctuations and their under-

lying structural drivers, coupled with narrative attribution of the associated texts. We

then show how the model can be used out-of-sample together with Reinforcement Learn-

ing (RL) techniques to produce structurally coherent summaries of a high-frequency flow

of textual information. Accordingly, more than training a deep neural network solely

to optimize predictive performance, we explore how RL and a multimodal Transformer

architecture can be used as a structural narrative filter.

To fix ideas, the problem we study is based on a common and broadly defined hy-

pothesis where text, here economic news, provides timely information about the most

important events affecting macroeconomic fluctuations. Specifically, we assume that both

the texts and economic time series are (partly) driven by the same underlying causes
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and events, and that their joint contextualized representations are informative about the

class and sentiment of the associated texts, as well as the historical shock decomposition

commonly used to understand economic fluctuations.1

These arguments do not imply that the Transformer architecture alone can identify

the underlying sources of aggregate fluctuations. Identifying causal relationships from

observational, aggregated data requires imposing (strong) assumptions. Thus, what we

explore is how a Transformer-based architecture can filter multimodal information in line

with a particular structural view. Fundamentally, this structural view must be encoded

in the training data, which we simulate. Conceptually, this approach is related to the re-

cent literature on prior-fitted networks (Müller et al., 2021; Hollmann et al., 2022; Nagler,

2023), which studies how neural networks can be trained on simulated data to perform

amortized inference under an implicitly specified prior over data-generating processes. In

contrast to this literature, which typically considers broad task distributions and empha-

sizes predictive optimality across heterogeneous environments, we fix a single structural

model and use it as a disciplined prior that governs both the joint distribution of observ-

ables and the associated structural objects of interest. To mitigate in-sample circularity

and assess usefulness, we strictly separate training, validation, and a quasi real-time out-

of-sample evaluation on non-synthetic data. This prevents re-use of the same simulated

sequences and allows testing whether the supervised narrative filter remains informative

when confronted with unseen news and time series data. Importantly, this separation nei-

ther provides model-free identification nor validates the structural view; it only ensures

that the reported performance is not an artifact of evaluating on training data.

In our benchmark configuration we consider the problem of estimating the business

cycle and structural demand, supply, and noise components. The practical usefulness

of this configuration is easy to motivate. From, e.g., an inflation-targeting central bank

perspective having accurate business cycle estimates is important, but knowing that the

business cycle is growing because of higher demand, rather than supply, might be equally

important because the policy rate response will easily be very different in these two cases.

Still, the framework we propose is general and not tied to any specific structural imple-

mentation. It can, for example, be implemented under assumptions ranging from a single

common business cycle shock (e.g., Angeletos et al. (2020)) to much richer descriptions of

1See, e.g., Veldkamp (2011), Shiller (2017) and Chahrour et al. (2021) for information choice mechanisms

where the news-media-economics linkages are described more explicitly within either a behavioral or

rational expectations framework. The proposed framework can in principle also be used for narrative

attribution of shocks. This would however require construction of training data where the mapping

between economic variables and the texts is such that the latter contains unpredictable news. We find

it easier to construct training data under the less restrictive assumption of predictability, as captured by

the historical shock decomposition.
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macroeconomic fluctuations (e.g., Smets and Wouters (2007)). To demonstrate the frame-

work’s flexibility, we also test it in a setting where the goal is to capture global oil market

dynamics as identified in Baumeister and Hamilton (2019), and describe two additional,

less-structural, model configurations. One identifies news topics relevant to business cycle

fluctuations (as first proposed by Thorsrud (2018) and Larsen and Thorsrud (2019)). The

other focuses on the model’s ability to handle mixed-frequency data.

The design of the deep neural network we propose builds on the attention mechanism

(Vaswani et al., 2017), and has an encoder-decoder structure using Transformer layers.

This facilitates processing multimodal data and generative modeling of the decoder out-

put. To be precise, the model we design combines two encoders, one for time series of text

data and one for multivariate economic time series. At a given time point, the language

encoder inputs a text sequence, which is processed via a Bidirectional Encoder Repre-

sentations from Transformers (BERT) architecture (Devlin et al., 2018), and outputs an

embedding representation of the whole sequence. The BERT weights are shared across

time points and potential time dependencies across the embedding representations are

modeled using a single Transformer block. Similarly, the multivariate time series encoder

consist of one Transformer block which outputs embedding representations of the multi-

variate time series data. The text and time series embeddings are then fused with the

embedding representation in the decoder, e.g., the business cycle, using cross-attention

layers. The end product is a network that simultaneously processes text and time series

data and performs multi-task learning (Caruana, 1997). I.e., the model autoregressively

outputs not only a structural decomposition via the decoder, but also performs narrative

attribution by outputting the associated sentiment and class of the underlying news flow.

While the Narrater is large compared to traditional econometric models it is deliber-

ately designed to be very parsimonious relative to typical LLMs used for text generation.

This, in combination with using pre-trained language encoders and domain specific fine-

tuning, facilitates efficient training and cost-effective usage. Besides capturing potentially

complex and long-range dependencies within a sequence, the Transformer architecture

enables these layers to capture non-linear features of the underlying data via non-linear

activation functions and multi-head attention with softmax weighting. Moreover, the

usage of the cross-attention layers permits modeling sequences measured at potentially

different frequencies and with different lengths - features that are prominent when mod-

eling macroeconomic data.

Based on similar cost and efficiency arguments the model is trained under the assump-

tion of one text per time period. When confronted with multiple news items within the

same period, we show that the model can be combined with RL to produce narrative and

structurally coherent summaries. In this setup, policy functions are estimated based on
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reward functions favoring low predictive loss, while optionally incorporating terms that

encourage narrative priors and coherence. A simple special case is greedy selection, which

requires no additional estimation or learning.

Empirical results from both simulation and real-world data demonstrate the model’s

value. On synthetic validation data, the model achieves near-perfect classification accu-

racy and outperforms simple baseline methods and LLMs on classification and sentiment

prediction. Permutation tests confirm that both modalities contribute to predictive per-

formance, while manual audits on the simulated training data suggest strong alignment

between model-generated labels and human judgment.

Ablation studies reveal that multi-task learning improves predictive performance, re-

moving either encoder significantly reduces performance, while experimenting with set-

tings determining the model’s embedding dimensions suggests that larger embeddings

encode more relevant information. Fine-tuning the BERT encoder alongside the other

model parameters is also essential: performance degrades by up to 80% if the pre-trained

parameters are kept fixed.

We test the Narrater on real-world Norwegian macroeconomic data and news from

Dagens Næringsliv, Norway’s leading business newspaper. In this quasi real-time experi-

ment the model’s business cycle estimates closely match those from traditional methods

and the extracted sentiment is highly correlated with the cycle. Moreover, although the

model and RL routine has to process thousands of news articles every quarter, the news

summaries and classified news flow accord well with conventional (ex-post) human beliefs

and narratives, while the model’s nowcasting performance for GDP growth is comparable

or slightly superior to that of a standard Dynamic Factor Model. In terms of describ-

ing global oil market fluctuations the model produces reasonable narrative attribution

and out-of-sample structural decompositions that are well aligned with those identified

in-sample in Baumeister and Hamilton (2019). The model’s forecasting performance for

the real price of oil is also on-par with a random walk, which is regarded as a compet-

itive benchmark in this setting. Furthermore, we demonstrate that the model performs

well in identifying user-defined news topics and efficiently processes mixed-frequency in-

formation. Thus, the proposed framework appears to be easily adaptable and capable of

addressing diverse user needs.

The remainder of the paper is structured as follows. Section 2 reviews related literature

and situates our contribution. Section 3 presents the Narrater model, while Section 4

details the simulation-based training data and estimation procedure and Section 5 reports

validation results. In Section 6 we describe how to use the model together with RL to

generate extractive summaries and present application results as well as model extensions.

Section 7 concludes.
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2 Related literature and contribution

This study intersects with research in both economics and computer science. To our

knowledge, it is the first to propose a multimodal Transformer-based architecture for

economic analysis, and connects to three main strands of the economics literature.

First, we build on the growing body of work using NLP methods in macroeconomics

(Baker et al., 2016; Hansen and McMahon, 2016; Hansen et al., 2018; Larsen et al., 2021;

Bybee et al., 2024). More recent studies incorporate Transformer-based models such as

BERT for text classification and feature extraction (Liu et al., 2021; Gorodnichenko et al.,

2023; Dell, 2024; Gambacorta et al., 2024), with Ash et al. (2026) summarizing the trans-

formative impact of large LLMs on text analysis in economics. Unlike these approaches,

which typically treat text as a standalone feature set, we adopt a fully multimodal frame-

work in which text and time series data share a joint representation, estimated simulta-

neously through a Transformer architecture. This design enables supervised structural

decomposition of economic fluctuations alongside sentiment and class predictions in a

multi-task setup, rather than treating text as a generic control. Together with RL the

model also produces real-time text summaries that tie numerical movements to concrete

news items.

Second, our work relates to the macroeconomic literature on signal extraction, business

cycle measurement, and nowcasting. This literature often relies on large datasets (Stock

and Watson, 1989; Evans, 2005; Giannone et al., 2008; Banbura et al., 2011), handles

mixed-frequency inputs (Mariano and Murasawa, 2003; Aruoba et al., 2009), and increas-

ingly incorporates non-linear or text-based features (Marcellino et al., 2016; Thorsrud,

2018; Burri and Kaufmann, 2020; Shapiro et al., 2022). While our model shares these

features, and natively handles mixed frequencies and reporting lags through the cross-

attention mechanism, it differs from traditional statistical filtering methods by enabling

supervised structural decomposition via deep learning.

Third, we connect to the literature on narrative identification, which dates back to

Friedman and Schwartz (1963) and uses historical documents to interpret and identify

macroeconomic shocks (Romer and Romer, 1989; Ramey, 2011; Stock and Watson, 2012).

Although we do not identify shocks per se, but rather propose a framework for narrative

attribution consistent with a pre-specified structural view, our contribution builds on this

tradition by automating the classification of narrative content and integrating it into a

unified estimation framework.

We do not want to argue, however, that the proposed model necessarily is better

than existing technologies used in economics. Rather, we view our contribution as an

exploration of how recent advances in language modeling and deep learning can provide a

scalable framework for interpreting multimodal information through a consistent economic
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lens. Going forward, we envision numerous improvements and extensions to this type of

model architecture. Beyond our applications, the framework is potentially useful in any

setting where high-frequency text (or other unstructured streams) co-evolves with numeric

time series.

At a more general level our study speaks to large fields, foremost within computer sci-

ence, studying multimodal neural network architectures, LLMs for time series modeling,

and so-called foundational models (FM). In terms of the former, Xu et al. (2023) sur-

vey multimodal learning with Transformers, highlighting their intrinsic advantages and

scalability in modeling different modalities and tasks with fewer modality specific archi-

tectural assumptions than comparable methods. Early summation or concatenation of

the embedding representations of the different data modalities is a common design prin-

ciple. Here, to allow for potentially mixed-frequency data and different sequence lengths

across modalities, we instead follow a so-called multi-stream design principle using cross

attention. This is similar to in, e.g., Lu et al. (2019) and Tsai et al. (2019), but extend

this line of research from vision and language modeling to time series and economics.

A related literature uses LLM architectures to explicitly build and train foundational

models for time series analysis (Das et al., 2024; Woo et al., 2024; Jin et al., 2024).

However, for predicting macroeconomic time series the recent study by Carriero et al.

(2024) suggest that these types of FMs do no better than existing econometric models.

Similarly, studies such as Gambacorta et al. (2024) and Dell (2024) demonstrate that

specific fine-tuning of, e.g., BERT, delivers performance on par, or better, than LLMs in

a range of (economic) domain specific classification tasks, e.g., classifying the sentiment of

monetary policy speeches. This motivates a domain specific approach also for narrating

economic fluctuations, which we pursue here in a multimodal setting.

Finally, we speak to a large literature in NLP studying text summarization (Zhang

et al., 2025). Within this tradition exploring how multimodal input, and output, can

improve summarization quality is a growing area of interest extending traditional text

summarization to include other forms of data such as images, tables, and audio. Although

the benchmark Narrater is not a summarization model per se, we demonstrate how its

multimodal design features in combination with RL facilitate narrative attribution and

summarization.

3 The Narrater

The Narrater is built using standard tools from the deep learning literature and recent

advances in modeling sequences using Transformer-based architectures (Vaswani et al.,

2017).
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ŷtf+1,reg

Text Class
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Figure 1. The Narrater model architecture in the benchmark case of business cycle extraction.

Figure 1 shows a high-level overview of the proposed model architecture in the bench-

mark case of business cycle extraction. Two encoders - text and time series - map each

modality to embeddings of a shared hidden dimension. The time-series decoder inte-

grates these embeddings and autoregressively produces both the model output and the

next-period decoder input. The text encoder uses a BERT language model. BERT-like

models, introduced by Devlin et al. (2018), are pre-trained on large-scale corpora and can

be fine-tuned for a broad range of downstream tasks with minimal architectural modifi-

cation, often achieving state-of-the-art or near–state-of-the-art results. From the BERT

block we extract the sequence embeddings which are then forwarded to an independent

Transformer layer to capture the assumption that text and time series are driven by com-

mon shocks and to some extent share dynamics - so text in period t may predict texts

in later periods. For the same reason, independent Transformer layers are included in

the time series encoder and decoder, and cross-attention blocks fuse the modalities into

shared contextualized embeddings.

In sum, these choices aim to produce a network that processes text and time-series data

simultaneously and autoregressively outputs estimates of economic fluctuations and their

underlying structural drivers, coupled with a narrative decomposition of the textual flow

into its sentiment and class. Below we describe each part of the model in greater detail,

with Section 3.5 highlighting particular modeling choices and benchmark specifications.

Readers unfamiliar with Transformers and BERT might want to consult Appendix D

before proceeding.
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3.1 The text and time series encoders

Let a collection of T text sequences be denoted by st = (w
(t)
1 , w

(t)
2 , . . . , w

(t)
nt ) for t = 1, . . . , T,

where w
(t)
i represents the i-th token of the t-th sequence and nt is the length of that se-

quence. Then write the BERT architecture as a function that performs padding, masking,

inserts special tokens, and transforms each input sequence st into a contextualized repre-

sentation:

etxtt = fBERT
θ1

(st) ∈ RN×d, (1)

where d is the embedding dimension and θ1 encompass all the embedding matrices (token

and position) and weights of the Transformer encoder layers. Here we let etxtt represent

the sequence embedding associated with the [CLS] token. This is a common way of

summarizing sequence content when using this type of architecture and serves as an

efficient dimension reduction step in our application.2 Next, let Etxt ∈ RT×d define the

etxtt vectors stacked for all t ∈ {1, . . . , T}. In this way, the same BERT structure and

parameters (θ1) are reused to model multiple sequences, ensuring that each sequence is

encoded into a high-level representation space that is consistent across all T sequences.

Now, to allow for temporal relationships in the embedded text sequences we feed Etxt

through a separate Transformer block:

Htxt = fTF
θ2

(Etxt) ∈ RT×d, (2)

where the fTF
· function is a standard Transformer structure. Similarly, let xts

tts ∈ RD

denote a D-dimensional vector of macroeconomic variables at time tts ∈ {1, . . . , Tts}.
Each vector is then first projected into a d-dimensional embedding space via:

etstts = Wtsx
ts
tts + bts, (3)

where Wts ∈ Rd×D and bts ∈ Rd are learned parameters. The resulting embeddings

are stacked into Ets ∈ RTts×d and serve as the input sequence to a Transformer, with

positional encodings added in the usual manner:

Hts = fTF
θ3

(Ets) ∈ RTts×d. (4)

Accordingly, equations (1), (2), and (4) encode the input st for t = 1, . . . , T and xts
tts for

tts = 1, . . . , Tts into the embedding matrices Htxt and Hts.

2One could alternatively have carried forward embeddings for all the tokens in the sequence. However,

even for moderate time series lengths this would have had severe memory implications for subsequent

Transformer-layers and is thus not something we have experimented with.
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3.2 The decoder

To decode this information we build on the sequence-to-sequence type of architecture used

for language translation in Vaswani et al. (2017), but extend and adjust this structure to

process text and time series data.

For this purpose, let xf
tf
∈ RK be a time series measure(s), e.g., the business cycle, at

time tf , with K ≪ D in general and K = 1 here. Next, these K-dimensional observations

are transformed into an embedding of dimension d following the same projections as in

(3) for tf = 1, . . . , Tf , and further processed as:

Hf
(1) = fTF

θ4
(Ef ) ∈ RTf×d. (5)

To accommodate the multimodal information in Htxt and Hts we then apply two

subsequent cross-attention layers. These are similar to regular self-attention (see (21) in

Appendix D.1), but with the difference that the queries are defined as Qf
(·) = Hf

(·)WQf
(·)

,

and the keys and values as Ktxt = HtxtWKtxt and Vtxt = HtxtWV txt , or Kts = HtsWKts

and Vts = HtsWV ts . In particular, we first construct:

Hf
(2) = fCA

θ5
(Hf

(1),H
ts) ∈ RTf×d, (6)

and then:

Hf
(3) = fCA

θ6
(Hf

(2),H
txt) ∈ RTf×d, (7)

where fCA
θ·

denotes the cross-attention mechanism and both functions are combined with

a residual connection and layer normalization as in the standard attention layer.

Intuitively, since the queries for the cross-attention mechanism are derived from one

sequence (the decoder representation), while the keys and values come from another se-

quence (the encoder representations), the cross-attention layers allow one sequence to

attend to another sequence’s latent representations, enabling the attending sequence to

select and integrate the most relevant features from the other sequence. Figure 3 and the

associated discussion in Section 3.5 provide a concrete example of this mechanism and

how it is particular useful in settings with potentially mixed-frequency data or sequences

of different length.

3.3 The model-heads

Hf
(3) contains the decoded and multimodal information provided by the original inputs

st, x
ts
tts , and xf

tf
. In our benchmark model specification we use Hf

(3) in combination with

three separate model heads for inferring the state of the business cycle, and for classifying

the type and sentiment of the text sequences. For a particular time index, the regression

output is given by:

ŷtf+1,reg = Wrh
f
(3) + br ∈ RR, (8)
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where hf
(3) is the transpose of the tf -th row vector in Hf

(3) and the elements of ŷtf+1,reg

are discussed in subsequent sections.

Likewise, for text classification and sentiment estimation:

ŷtf+1,class = softmax(Wch
f
(3) + bc) ∈ RC , (9)

and:

ŷtf+1,sent = tanh(Wsh
f
(3) + bs), (10)

where ŷtf+1,sent is a scalar and tanh is the hyperbolic tangent function, ensuring that

the sentiment is bounded between -1 and 1. Thus, our model generates both continuous

predictions (ŷtf+1,reg and ŷtf+1,sent) and a discrete probability distribution (ŷtf+1,class)

from the same hidden representation hf
(3).

3.4 Generative modeling

The original Transformer-based encoder-decoder architecture introduced by Vaswani et al.

(2017) was generative in nature: given an input sequence (e.g., in English), the decoder

produced the output sequence (e.g., in French) one token at a time, conditioning each

prediction on the previously generated tokens. Decoder-only models follow a similar

autoregressive mechanism.

The Narrater inherits this generative structure. Given encoder representations Htxt

and Hts, along with an initial value xf
1 , the model autoregressively generates xf

2 , which

then serves as input for the next time step. This autoregressive dynamic is not ex-

plicitly imposed by equation (8), but arises from our modeling assumption: ŷtf+1,reg =(
ŷ
(1)
tf+1,reg, ŷ

(2)
tf+1,reg, . . . , ŷ

(R)
tf+1,reg

)
, where, as discussed further below, xf

tf+1 is constructed as

a sum over selected components of ŷtf+1,reg.

This design supports multi-step forecasting without requiring separate models for dif-

ferent prediction horizons. However, the effective forecasting window is bounded by the

decoder’s maximum sequence length, which defines its memory capacity.

3.5 Comments and benchmark specifications

Several model features and hyperparameter choices warrant discussion. First, the choices

of R (number of structural components) and C (number of text classes) define the model’s

structural lens. In our benchmark application we set R = 3 (demand, supply, noise), with

demand and supply comprising the latent business cycle factor. This assumes the busi-

ness cycle is driven by fundamentals while observables include measurement noise. Corre-

spondingly, C = 3, classifying text into the same three categories. These choices are not
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inherent requirements, and the model can easily accommodate alternative specifications

- as exemplified in Section 6.4.

Second, as noted in Appendix D.2, BERT comes in various sizes. We use BERTTINY

(Turc et al., 2019), a compact BERT variant that trades off model size and computation

for a slight accuracy reduction, enabling more efficient deployment while maintaining

strong performance on many NLP tasks. In particular, our BERTTINY has 2 Transformer

encoder layers, each with 4 attention heads and a 128-dimensional hidden size (about 4

million parameters).

Third, sequence length limitations in Transformer architectures impact the model’s

ability to capture long-term dependencies. For BERTTINY, the maximum sequence length

is N = 512, while for our model we set Tts = Tf = T = 40, equivalent to 10 years of

quarterly data. While longer contexts can be used, they incur higher computational costs.

Similarly, the embedding dimension d, which could in principle vary across query, key, and

value matrices - is fixed at d = 128, consistent with BERTTINY, using four attention heads.

Increasing d could enhance representational capacity but at a significant computational

expense. For this reason, we do not explore larger values, although we do report results

for smaller d values.

Fourth, we use different time indices for different inputs to emphasize the model’s ca-

pacity for handling mixed-frequency and asynchronous data via (cross-)attention and the

padding and masking operations conventionally used in Transformer-based networks. In-

deed, a key motivation for our multi-stream encoder-decoder design using cross-attention

is its inherent suitability for handling mixed-frequency data, which is a common data

property in macroeconomic contexts (Giannone et al., 2008; Mariano and Murasawa,

2003; Aruoba et al., 2009). In contrast, methods relying on concatenation or simple inter-

actions often require synchronized sequences. While the benchmark specification assumes

quarterly data throughout, an assumption relaxed in Section 6.4, we model the typical

one-quarter lag in time series availability relative to text. Thus, tts = tf and t = tts + 1,

reflecting the real-world delay in macroeconomic data releases. Figure 2 illustrates the

assumed information structure used for training, and later, for out-of-sample applications

and news summation.

Fifth, for the time series decoder and encoder input dimensions, we adopt K = 1

and D = 8 in our benchmark application, where D is determined by the structure of the

training data (Section 4). Given K ≪ D, our encoder-decoder model shares similarities

with traditional autoencoders in machine learning (Goodfellow et al., 2016) and factor

models in macroeconomics (Stock and Watson, 1989; Forni et al., 2000; Giannone et al.,

2008), all of which reduce input to lower-dimensional latent representations. Unlike stan-

dard autoencoders, however, our benchmark model provides the decoder with the latent
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Figure 2. The Narrater information structure.

business cycle factor xf
tf

, making the learning process more supervised. This structure is

closer in spirit to adversarial autoencoders (Makhzani et al., 2015), which align the latent

code distribution with a prior to ensure meaningful generative outputs.

Finally, attention in the Transformer and cross-attention layers can be either causal

or bidirectional. We set all attention layers in (2), (4), (5), and (6) to causal, but allow

bidirectional attention in (7). This design lets the model perform smoothing - akin to

forward-backward filtering in econometrics - by incorporating future information into

current state estimates.

Figure 3 illustrates the cross-attention mechanism and shows estimated attention

scores (i.e., the softmax outputs from (21)) for one attention head in (2) and two in

(7), based on a validation example. In Figure 3a, the scores reflect a clear autoregressive

structure: text at time t attends only to prior periods. In contrast, the attention heads in

(7) capture richer dynamics: Figure 3c emphasizes contemporaneous links between Hf
(2)

and Htxt, while Figure 3b captures both leading and lagging effects.

4 Training

Multimodal training data are common in many domains but largely unavailable in macroe-

conomics. To address this constraint, we generate synthetic training data via simulation.

While simulation is often used in machine learning simply to augment scarce data, in

our setting it plays a more substantive role: it fixes a structural data-generating pro-

cess that jointly governs observable time-series dynamics, narrative selection, and the

associated structural objects of interest. Training on simulated data therefore instills a

specific structural inductive bias into the Narrater, in the sense that the network learns
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Figure 3. Figures 3a - 3c report attention scores (equation (21)), for one of the attention heads in (2)

and two of the attention heads in (7) when processing one observation in the validation set. Figure 3d

reports the manual audit’s confusion matrix.

to interpret multimodal observational realizations through a maintained structural lens.

In this respect, the simulated environment functions as an explicit prior over admissible

data–causal mappings, allowing the network to act as a supervised narrative filter con-

sistent with the assumed structural model.3 To avoid over-fitting and circular reasoning,

simply assuming the conclusion we aim to test, we clearly split the observable data used

as basis for the simulations into a training and validation sample and a sample containing

genuinely unseen non-synthetic data.

3Inductive bias refers to the set of a priori assumptions embedded in a learning procedure that guide

generalization from finite data. In this sense, inductive bias is closer to the use of prior information in

Bayesian statistics than to statistical bias in the estimation-theoretic sense; see Caruana (1997); Ruder

(2017) for discussions in the context of multi-task learning.
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Below we summarize the key aspects of the data simulation process for our benchmark

business cycle application and the empirical data sources used to guide it. As the Nar-

rater in principle is agnostic to the specific assumptions underpinning the simulations, we

provide full methodological details in Appendix B. The subsequent sections outline the

estimation procedure, including hyperparameter settings and the loss function.

4.1 Simulation

For our main business cycle application we simulate economic time series data from a

Dynamic Factor Model (DFM). We acknowledge that the true data-generating process

of the economy is undoubtedly more complex and non-linear than any DFM specifica-

tion. However, the DFM is a well-established and effective framework commonly used

in empirical business cycle analysis (Stock and Watson, 2016). DFMs can also be used

for structural inference, and the log-linearized solutions of Dynamic Stochastic General

Equilibrium (DSGE) models can be expressed as constrained DFMs.

Specifically, we assume that observable macroeconomic variables are driven by two

latent factors, an aggregate business cycle factor and an inflation factor, along with id-

iosyncratic noise. These factors evolve in response to exogenous demand and supply

shocks. A demand shock drives prices and output in the same direction, while a supply

shock drives them in opposite directions. The factors themselves are identified using the

unit identification scheme discussed in, e.g., Bai and Wang (2014), letting in particular

GDP growth load with one on the aggregate business cycle factor.

The DFM is estimated using the time series described in Section 4.3. After estimating

the parameters, artificial datasets are simulated and split into training and validation

sets. Each observation includes simulated macroeconomic variables xts
tts , the latent factor

xf
tf

, and its historical shock decomposition ŷtf+1,reg, for tts = tf = 1, . . . , Tts + 1.

To link the simulated times series to text, a stratified sampling strategy inspired by

Dell (2024) is applied. This aims to define the semantic territory of the category of

interest in vector space without injecting unintended tone or framing. For this purpose

we first define a set of benchmark key-word-based text sequences representing demand

and supply narratives, and good or bad sentiment. In our application we think about

demand narratives as associated with general expectations and demand, whereas supply

narratives are written about in the context of productivity, efficiency and innovation.

Good or bad sentiment is simply defined using positive and negative word sequences.

Next, we obtain the embedding representation of these benchmark sequences and real-

world text sequences (from the corpus described in Section 4.3) are labeled using their

embedding representations and (cosine) similarity to these benchmarks. Noise is defined

as texts that do not fit either the demand or supply benchmarks well, using a 90th
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percentile threshold as explained in Appendix B.

The class and sentiment of these texts are assumed to be influenced by the same

shocks driving the DFM, consistent with studies portraying the media as “information

intermediaries” (see, e.g., Nimark and Pitschner, 2019; Chahrour et al., 2021). However,

we do not assume a deterministic mapping between shocks and texts, acknowledging the

possibility of incomplete or inaccurate reporting. Instead, to construct st, ytf ,class, and

ytf ,sent for training the text class is first sampled from a categorical distribution, where the

class probabilities depend on the relative magnitude of the elements in m
(r)
tf

= |y(r)tf ,reg
| at

each time point: ytf ,class ≡ ctf ∼ Categorical
(
πtf

)
with πtf =

(
m

(c)
tf

)
/
∑
r∈R

(
m

(r)
tf

)
c ∈ R.

Let Bc be the set of labeled sequences for class ct with known sentiments {s(b) : b ∈ Bc}.
Then, the class-consistent article whose sentiment is closest (in absolute deviation) to

the target is chosen: b⋆tf := arg minb∈Bc

∣∣ s(b) − s⋆tf ∣∣, with s⋆tf = tanh(y
(ctf )

tf ,reg
), and the

text-based input at time t is simply the selected sequence st = ψ(b⋆tf+1), where ψ maps the

chosen article to the representation used by the model, with sentiment ytf ,sent = s(b⋆tf ).

Crucially, the associations learned by the Narrater will be shaped by the assump-

tions embedded in the chosen data-generation process, and alternative assumptions are

discussed below. Still, while any of these assumptions may or may not reflect real-world

dynamics, overly simplistic or unrealistic structures are likely to result in poor model

performance when applied to real data or evaluated through manual audits. To facilitate

such evaluations, the DFM is estimated using data from 1986 to 2010, withholding the

post-2010 period for out-of-sample evaluation. Similarly, text data from the post-2010 pe-

riod is excluded from training to allow for independent testing on data never seen during

training.

4.2 A manual audit and robustness

The simulation strategy described above is fast and simple and facilitates generating a

large training data set in an automated manner. To assess whether the automated labeling

procedure aligns well with human classification, we perform a manual audit. From the

generated training data we randomly select 30 articles of each category and manually

label them as demand, supply, or noise.

Figure 3d summarizes the results from the audit. The precision is above 70% for

both demand and supply, and 90% for noise. In terms of sensitivity the performance is

on average slightly better, with a perfect score for the supply category. On average the

automated labeling procedure obtains an accuracy and F1-score of 79%.

For more concrete examples, Table 1 reports the first sentences of five articles and

their manually and automatically assigned class. As illustrated, the labeling task is not
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Table 1. First sentences of five articles used in the automatically classified training set and the associated

manual audit. The news texts are translated from Norwegian to English using GPT-4.5.

Manual Automated Text

Noise Noise “A frequently repeated accusation against the government parties is that they

have broken their election promises to give Norway a better school system. The

accusation would have been correct if the Conservatives, the Liberal Party, and

the Christian Democrats had promised during last year’s election campaign...”

Supply Supply “The Norwegian postal monopoly is falling, and new international players are

ready to claim their share of the market. Fierce competition, similar to that

in the telecommunications market, is expected. The fall of the postal monopoly

will lead to lower prices for consumers, a variety of new services, many new

small companies that won’t make money, and eventually postal bankruptcies...”

Demand Demand “The National Association of Business Economists (NABE) yesterday released

a survey of 47 leading analysts, expressing that the American economy is facing

a sharp downturn in the first quarter. Unemployment is expected to rise to

around nine percent this year, and this recession is likely the worst...”

Noise Demand “Denmark should not expect special agreements on sensitive political issues in

the Maastricht Treaty. ”The EC cannot grant Denmark exemptions within de-

fense cooperation and the economic and monetary union as long as we demand

that future member states must adhere to the Maastricht Treaty,”...”

Noise Supply “By Friday, all production had already stopped at the small and medium-sized

businesses along Gre̊akerveien, which runs parallel to the Glomma River just

outside Sarpsborg. From the morning, there was hectic moving activity —

saving whatever could be saved. By the afternoon, the business owners could

do nothing but watch as the river rose minute by minute...”

always trivial, and different auditors might reach different conclusions.

In Appendix B.2 we perform a robustness experiment contrasting the embedding-

based labeling procedure used here with a simpler Boolean key-word-based approach.

This alternative labeling procedure does, however, only obtain an accuracy of 46% on the

manual audit, suggesting that the embedding-based labeling procedure is reasonable.

To keep the analysis transparent and results easy to interpret we focus on the sim-

ulation baseline described above. Still, in Appendix B.3 we explore the effects of small

perturbations to the text-time-series mapping. The results suggest that training on data

generated under different assumptions - or directly on pooled data - could potentially fur-

ther enhance model performance and robustness. We leave such explorations for future

research.
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4.3 Data

Consistent with a large literature on business cycle analysis, we utilize a broad set of

macroeconomic time series to infer the latent business cycle. In the benchmark case the

dataset includes Norwegian quarterly National Account Statistics: real GDP (GDP), real

investments (I), and the unemployment rate (U). We also incorporate quarterly measures

of consumer price inflation (CPI), house price inflation (HPI), the interest rate spread

between short and long maturities (SPREAD), and household credit volumes (CREDIT).

These variables, individually or jointly, have been shown to possess strong predictive power

for business cycle dynamics (Estrella and Hardouvelis, 1991; Stock and Watson, 2002;

Schularick and Taylor, 2012). Given the significance of oil for the Norwegian economy

(Bjørnland and Thorsrud, 2016), we also include the oil price (OIL).

Data are transformed to emphasize cyclical components. Specifically, GDP, I, and

CREDIT are log-transformed and differenced over eight quarters, following Hamilton

(2018). For CPI, HPI, and OIL, we use the four-quarter log difference to approximate

annual inflation rates.

The main text data source is a comprehensive corpus of articles from Dagens Næringsliv

(DN), Norway’s largest and most widely read business newspaper, and the fourth largest

overall. The articles are sourced from Retriever’s ”Atekst” archive, covering all DN pub-

lications from the late 1980s through mid 2023.4 The resulting dataset contains over

500,000 articles. For each, we retain the timestamp, title, and full text, with the article

body serving as input to the model.

4.4 Estimation

The model is trained using Stochastic Gradient Descent with the Adam optimizer. We

employ a batch size of 16 and an initial learning rate of 0.0005, which is halved every

second epoch to facilitate convergence.

All model parameters, θ1 through θ6, along with weight and bias matrices Wj and bj

for j ∈ {ts, r, c, s}, are jointly estimated. The BERTTINY encoder (θ1) is initialized with

pre-trained weights (Turc et al., 2019), while the remaining parameters are initialized

using the Glorot scheme (Glorot and Bengio, 2010). To prevent excessive updates to the

pre-trained encoder, its learning rate is set to one-fifth of the rate used for the other model

components.

The benchmark model outputs three predictions, regression, sentiment, and classifica-

4For certain recent years with incomplete data in the archive, missing articles were manually retrieved

from DN’s digital print edition.

18



tion targets, and is trained to minimize a weighted composite loss function:

Ltotal = ωr Lr

(
ŷreg,yreg

)
+ ωs Ls

(
ŷsent,ysent

)
+ ωc Lc

(
ŷclass,yclass

)
, (11)

where predictions are evaluated for tf = 2, . . . , Tf + 1. Mean squared error (MSE) loss is

used for both the regression and sentiment tasks:

Lr

(
ŷreg,yreg

)
= ∥ŷreg − yreg∥22, Ls

(
ŷsent,ysent

)
= ∥ŷsent − ysent∥22,

and categorical cross-entropy is used for classification:

Lc

(
ŷclass,yclass

)
= −

C∑
c=1

y
(c)
class log

(
ŷ
(c)
class

)
.

Loss weights are set to ωr = 0.5 and ωs = ωc = 0.25, reflecting equal prioritization of

the regression and text classification tasks. These weights can be tuned as hyperparame-

ters to optimize predictive performance.

As described in Section 3.5, the model autoregressively constructs output sequences.

However, during training, we use teacher forcing: ground-truth values (ytf+1,reg) are sup-

plied as inputs rather than the model’s own predictions (ŷtf+1,reg). Similarly, to facilitate

efficient training, input data xts
tts is standardized to zero mean and unit variance within

each training observation.

We allocate 90% of the dataset for training and reserve 10% for validation. Validation

is performed every 200 iterations. To prevent overfitting, early stopping is triggered after

five validation rounds without improvement. Additional regularization is applied through

L2 penalties on the model head parameters and dropout. Dropout mitigates overfitting

by randomly setting a fraction of hidden units to zero during training (Srivastava et al.,

2014), and is applied throughout the attention and feed-forward sublayers, promoting

reliance on diverse patterns rather than specific features. The composite loss function in

(11), combined with hard parameter sharing via (7), is an example of so-called multi-task

learning and provides another form for (implicit) regularization (Ruder, 2017). In machine

learning this approach has a long history because it typically “improves generalization by

leveraging the domain-specific information contained in the training signals of related

tasks” (Caruana, 1997).

Model training is performed on two NVIDIA RTX 4090 GPUs with 24 GB of memory

each. Training typically completes in approximately 3 hours.

5 Validation results and diagnostics

In this section we use the benchmark business cycle case and validation data to assess

overall model performance, conduct permutation tests, component ablations, and hyper-

parameter sensitivity analyses.
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Table 2. Panel A reports classification and sentiment performance of the Narrater relative to a Naive

Bayes (NB) classifier and the Lasso sentiment regression, as well as relative performance measures on all

tasks compared to three different LLMs. A score below 1 indicates the Narrater performs better. Panel

B reports the performance of the benchmark model relative to several alternative model specification;

without a text encoder (NoTxt); without a time series encoder (NoTS ); for two different embedding

dimensions (TxtComp and TsExp); estimating the model without simultaneously fine-tuning the language

encoder (NoFt); removing the sentiment and classification model heads (NoMTL).

Panel

A
NB / Lasso LLM (zero-shot)

Panel

B
Ablation Hyperparameter Fine tuning No MTL

Gemini o3 R1 NoTxt NoTS TxtComp TsExp NoFt NoMTL

Class 0.95 0.42 0.34 0.32 0.36 1.00 1.00 1.00 0.94

Sent. 0.29 0.05 0.04 0.07 0.08 0.70 0.63 0.63 0.16

BusC. 0.55 0.68 0.00 0.83 0.96 1.00 0.97 0.92 0.94

5.1 Model accuracy

On average, the model achieves nearly 100% classification accuracy across the validation

sequences and root mean squared errors (RMSE) of approximately 0.02 for sentiment

predictions and 0.18 for the business cycle predictions. To contextualize these results, we

compare them to three alternative approaches: a Naive Bayes classifier for text classifi-

cation, a regularized Lasso regression for sentiment prediction, and three state-of-the-art

LLMs with multimodal prompts.

Naive Bayes is a simple but often competitive baseline in multi-class classification

tasks. Prior studies have found that deep learning models such as BERT typically out-

perform Naive Bayes by 5–20% (Minaee et al., 2021). For the sentiment task, we estimate

a Lasso regression model using 5-fold cross-validation for hyperparameter tuning. For

both models the document-term matrix is used for training. In terms of using LLMs

directly for time series modeling, Gruver et al. (2023) was among the first to document

that LLMs can surprisingly zero-shot extrapolate time series at a level comparable to or

exceeding the performance of purpose-built time series models trained on the downstream

tasks, while Requeima et al. (2024) demonstrate that LLMs can process numerical data

and make probabilistic predictions at arbitrary locations, guided by natural language text

describing a user’s prior knowledge. Inspired by these developments we query Google’s

Gemini, OpenAI’s o3, and DeepSeek’s R1 with a multimodal prompt (Appendix F), ask-

ing the LLM for the next observation prediction as well as the class and sentiment of the

text.

Panel A of Table 2 reports the model’s performance relative to these baselines. While

the Narrater ’s near-perfect classification accuracy suggests the task may not be particu-

larly difficult, the model consistently outperforms Naive Bayes by approximately 5 per-

centage points. In the sentiment regression task, the improvement is more pronounced,
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and the proposed model reduces the RMSE by nearly 70% relative to the Lasso baseline.

The three LLMs demonstrate substantially lower performance on the text classification

and sentiment scoring tasks, with classification accuracy approaching random chance and

sentiment RMSEs an order of magnitude larger than the proposed model’s, suggesting

that a more refined prompt engineering strategy should be adopted. In particular, with

the used prompt, the LLMs do not seem to be able to efficiently utilize the multimodal

information. In terms of predicting the business cycle the relative performance of the

o3 model is not bad, but still substantially worse than the Narrater. One reason for the

somewhat weak LLM performance is that they occasionally make extreme predictions, an

observation also made by Carriero et al. (2024). Another reason is likely that these LLMs

are foundational models not trained specifically to utilize structural multimodal informa-

tion to address the problem at hand, and studies such as Gambacorta et al. (2024) and

Dell (2024) also demonstrate that specific fine-tuning of, e.g., BERT, delivers performance

on par, or better, than LLMs in a range of (economic) domain specific classification tasks.

5.2 Permutation tests

The model is trained on data with an assumed multimodal structure. To learn about the

weights the model assigns to the different data modalities we perform permutation tests.5

In the tradition of Breiman (2001) and Fisher et al. (2019), an input feature is determined

as “important” if shuffling its values increases the model error because in this case the

model relied on the feature for the prediction. Here we assess the relative importance of

text versus time series input by randomly shuffling the respective encoder input data and

then comparing the change in predictive accuracy relative to the original case.

Figure 4 presents results for the last elements in the predicted sequences from 10 rep-

etitions of the permutation test. Results for the benchmark Narrater are reported in the

first row in each graph, while the remaining rows report robustness. For the classification

task, performance drops sharply when the text input is permuted, but not when the time

series input is permuted. The absence of a permutation effect on text classification in

our baseline reflects that the textual input is sufficiently informative on its own, making

additional cues from the time series redundant in this setting. This should not, however,

be read as a limitation of the multimodal design itself. In the topic model application

described in Appendix C, for example, we observe that expanding the task complexity

5Rather than applying post-hoc feature attribution methods such as SHAP or LIME, we use permuta-

tion tests to evaluate modality-level importance. This approach aligns more closely with our structural

design and provides an intuitive assessment of the model’s dependence on each modality. Moreover, for

Transformer-based architectures it is still an open research question how to apply feature attribution

methods.
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Figure 4. Traditional box plots of relative performance differences from permutation tests. A value

above one indicates that the model performs worse when the particular data input is randomized.

(increasing the number of classes) under the benchmark simulation scheme produces a

stronger role for the time series, and thus a clear multimodal interaction.6 In contrast,

both modalities contribute to sentiment and growth predictions. For growth, shuffling

either modality roughly doubles the prediction error, indicating joint dependence. For

sentiment, however, performance deteriorates far more when the text input is random-

ized, highlighting its dominant role in that task.

5.3 Ablation experiments

To more directly assess the contribution of each model component, we conduct ablation

experiments by removing either the text encoder (NoTxt) or the time series encoder

(NoTS ) from the full model. In both cases, the modified models are re-estimated to

account for potential reallocation of weights across remaining components.

Panel B of Table 2 summarizes the results. Removing the text encoder leads to a

substantial decline in predictive performance across all outputs, especially for sentiment,

where accuracy drops markedly. While the time series encoder is less critical for clas-

sification, it still plays an important role: sentiment prediction performance declines by

approximately 30% in the NoTS model compared to the benchmark. These findings

closely align with the permutation test results in Figure 4, and demonstrate that the

benchmark model effectively integrates both data modalities to improve prediction.

6In such cases, borderline class assignments, noise, and greater overlap between textual features make it

harder for the model to rely on text alone, increasing the value of complementary information from the

time series. Similar patterns are observed for the additional robustness experiments reported in Figure

4. In the interest of brevity, these are discussed in Appendix B.3.
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5.4 Hyperparameter sensitivity

We also evaluate two reduced-size variants of the benchmark model in which the embed-

ding dimensions of the time series encoder and decoder are reduced by a factor of eight,

significantly lowering the number of trainable parameters. To align embedding dimen-

sions in the cross-attention layers, we consider two alternatives: in the first (TxtComp),

text encoder embeddings are compressed to match the smaller time series embeddings;

in the second (TsExp), the time series embeddings are expanded to match the original

text dimensions. As shown in Table 2, both configurations perform slightly worse than

the benchmark, with negligible differences between them, suggesting that the original

embedding sizes capture meaningful structure.

The NoFt column of Table 2 compares the benchmark to a model in which the BERT

language encoder is not fine-tuned, i.e., the pre-trained weights θ1 in (1) remain fixed

during training. This constraint leads to a substantial drop in sentiment prediction per-

formance and a 6–8% decline in accuracy for the classification and growth tasks. These

results underscore the importance of task-specific fine-tuning of the language encoder.7

Finally, the last column in Table 2 shows how predictive performance is affected when

the benchmark Narrater model is estimated without the classification and sentiment

regression heads, which previously provided implicit regularization via multi-task learning

(Caruana, 1997; Ruder, 2017). In line with this literature we observe a performance drop.

6 Reinforcement learning for out-of-sample applica-

tions and news summation

To evaluate the benchmark model on non-synthetic data, we conduct a quasi–real-time

out-of-sample experiment using DN news and Norwegian macroeconomic time series (Sec-

tion 4.3). We initialize the model with news texts, macro data, and business cycle values

for the sample 1986Q2–1996Q1, then iteratively roll it forward from 1996Q2 to 2023Q2 -

noting that data after 2010 were not seen during training or validation.8

7The BERTTINY tokenizer is based on an English-language corpus. We experimented with retraining the

encoder using a Norwegian tokenizer and domain-specific corpus, but found that performance declined on

a range of language understanding tasks. While perhaps surprising, we suspect that this negative result

likely is driven by the (limited) size and quality of the text corpus used for re-training. We also tested

the larger, pre-trained Norwegian BERTBASE model (Kummervold et al., 2021), without re-estimating

the model weights. In line with results reported in Table 2, the Norwegian BERTBASE model performed

worse than our benchmark. While such models may offer benefits for more complex tasks, they appear

sub-optimal for our application.
8The experiment is labeled quasi-real-time because we do not use real-time vintages of data but still

assume an information structure that to a large degree mimics the information structure available in a
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Each new quarter contains thousands of news articles, but only one can be mapped

into the model state as the representative story. Thus, the real-time application becomes

a sequential decision problem: once an article is chosen, it enters the state history and can

influence all subsequent predictions. This motivates an RL framing, wherein the Narrater

environment updates states and rewards and an agent scores articles according to a policy,

as illustrated in Figure 2.

To make estimation of the policy function a tractable problem in a high-dimensional

setting, while ensuring predictive accuracy, interpretable narrative attribution, robust-

ness and efficient deployment, we build on three strands of work: (i) entropy-regularized

control, which motivates the use of soft value functions and Boltzmann policies (Ziebart,

2010; Todorov, 2006; Kappen, 2005; Haarnoja et al., 2018); (ii) Kullback–Leibler (KL)

based policy optimization, which provides stable projection methods for updating poli-

cies toward value-weighted targets while remaining close to a baseline distribution (Peters

et al., 2010; Schulman et al., 2015; Abdolmaleki et al., 2018); and (iii) classical rollout

paradigms from stochastic control, which justify usage of short-horizon lookahead to ap-

proximate long-horizon value functions (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2019).

Appendix E.1 briefly outlines the mapping between this framework and the classical

Bellman recursions. Below we describe our approach in greater detail. A simple special

case is greedy selection, which requires no additional estimation or learning.

6.1 Reinforcement learning approach

To outline the problem formulation, we start from the maintained assumption that news

is available for the current quarter whereas the macroeconomic data is not, i.e., tts = tf

and t = tf + 1. Further, for a generic quarterly time segment, let i denote the i-th

news article in the last quarter T in the segment and NT the total number of articles

in this quarter. The state at time T is then sT =
(
sT , xts

Tts
, xf

Tf

)
, and the action set

AT = {aT,1, . . . , aT,NT
} consists of all candidate news articles in quarter T . Choosing aT,i

corresponds to selecting article i for narrative attribution as well as model predictions

ŷ
(i)
Tf+1,reg, ŷ

(i)
T,class, and ŷ

(i)
T,sent, which in turn feed into the next state sT+1.

In general, any reward function can be specified. Here, to emphasize accuracy, allow

for narrative priors, and favor fundamentals and persistence, we evaluate candidates along

four dimensions:

rT (sT , a) = −RMSE
(

ˆGDP
(i)
1:Tf

, GDP1:Tf

)
+ λN NPRIOR(a, ãT )

+ λF FUND(a) + λP PER(a,HT−1),
(12)

real-world application.
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where ˆGDP
(i)
1:Tf

is approximated as the sum of the elements in ŷ
(i)
1:Tf ,reg

, the subscripts asso-

ciated with a are dropped for notation simplicity, and the mathematical definition of each

term is described in Appendix E. In short, accuracy is captured via RMSE( ˆGDP
(i)
1:Tf

, GDP1:Tf
);

NPRIOR(a, ãT ) measures similarity between the candidate and a reference narrative ãT .

The usage of reference texts is similar in spirit to the narrative identification approach

taken in Antoĺın-Dı́az and Rubio-Ramı́rez (2018), and helps keep the model aligned with

any narrative prior the model user might have for particular time periods; FUND(a)

scores each candidate article by how likely it is fundamental news (demand or supply)

relative to noise and intends to capture the idea that important events are fundamental;

PER(a,HT−1) measures persistence and rewards overlap with previously chosen narra-

tives, or in other words, provides higher rewards for narratives that prevail. Finally,

λN , λF , λP are hyperparameters governing trade-offs.

Classical optimal control would optimize a policy to maximize cumulative reward, but

with thousands of candidate actions per period (NT ≫ 2000) this is computationally in-

feasible, and the resulting policies tend to be brittle with poor exploration. We therefore

adopt an entropy-regularized approximation with short rollouts of horizon H and a pa-

rameterized softmax policy (Ziebart, 2010; Todorov, 2006; Kappen, 2005; Haarnoja et al.,

2018).

The rollout-based target distribution weights actions by truncated expected returns:

qT (a) ∝ E

[
H−1∑
h=0

γhrT+h(sT+h, aT+h)
∣∣∣ aT = a

]
, (13)

with discount factor γ. Setting H = 1 recovers a pure contextual bandit formulation,

matching the setup used, for example, in news recommendation (Li et al., 2010), while

modest H captures near-term dependencies without exploding complexity.

The policy class is a multinomial logistic regression over features ϕ(sT , a) extracted

from the multimodal representation in (7):

πθ(a | sT ) =
exp{β ϕ(sT , a)⊤θ}∑

a′∈AT
exp{β ϕ(sT , a′)⊤θ}

, (14)

where β is the inverse temperature. This amortizes rollout information into parameters

θ, so evaluations at deployment do not require new rollouts.

Training projects the policy onto the rollout targets using a KL-regularized objective:

L(θ) =
Ts∑

ts=1

[
KL(qts ∥ πθ(· | sts))+λKL KL(πθ(· | sts) ∥ π0(· | sts))−λHH(πθ(· | sts))

]
, (15)

where ts = 1, . . . , Ts are the (quarterly) decision points. Further, π0 is a baseline prior

(here ∝ exp(−RMSE)), entropy H(·) promotes exploration, and λKL, λH control conser-

vatism and smoothing. This follows the logic of KL-regularized or trust-region updates
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(Peters et al., 2010; Schulman et al., 2015; Abdolmaleki et al., 2018), ensuring stable and

interpretable policy improvement even in high-dimensional spaces.

While this general policy learning scheme provides a principled foundation for narrative

attribution, in practice it can be useful to employ a simpler, faster rule, more robust to

potential out-of-sample distributional shifts. Specifically, if we restrict attention to the

immediate predictive reward and collapse qT onto the single best candidate, the policy

reduces to a greedy bandit:

âT,i := arg min
a∈AT

RMSE
(

ˆGDP
(i)
1:Tf

, GDP1:Tf

)
. (16)

As such, equation (16) can be seen as a degenerate case of the general RL framework

without any rollouts and reward based solely on prediction accuracy.

6.2 Application details

In the real-time experiments below, we implement both the greedy baseline of (16) and

the RL policy, trained via contextual bandit rollouts and KL-regularized projections.

We denote these as the Narrater-greedy and Narrater-RL, respectively. The RL approach

permits integrating additional dimensions of narrative quality - such as coherence with the

narrative prior - into a single decision rule. It also balances exploration and exploitation

through the softmax temperature and entropy regularization, and delivers probabilistic

policy weights that quantify the decisiveness of each choice. The greedy rule cannot

accommodate these trade-offs and provides no natural measure of confidence. It does,

however, serve as a fast and transparent benchmark.

To explore the effects of different hyperparameter choices, we consider three versions

of Narrater-RL; the default specification with rewards as in (12); a version emphasizing

only RMSE rewards (λF = λN = λP = 0); and finally a version with only RMSE and

NPRIOR rewards (λF = λP = 0). At each decision point the Narrater delivers an up-

dated “smoothed” history of its output history - analogous to standard forward-backward

filtering algorithms in traditional time series analysis. RMSE rewards are computed us-

ing this sequence, ensuring consistency with the information structure encountered in

real-world applications.

In total 110 quarterly decision points, or time segments, are processed. For the initial

segment, covering the sample 1986Q2 to 1996Q1, the history of st−1, xts
tts , and xf

tf
for

tf = 1, . . . , Tf is constructed by iterating the model forward starting from a random draw

of s1 and setting xf
1 equal to the eight quarter growth in GDP. Implementing extractive

summarization and narrative attribution using (16) requires no training. For learning θ in

(14) only data for decision points prior to 2010 are used. The selected narrative, and thus

the extractive summary, maximizes πθ(a | st), with the optimal selection index denoted î.
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The reference texts used in the reward function act as narrative priors: they need

not reappear verbatim out of sample, but during training they bias the policy towards

articles that align semantically with their content. Thus, the learned policy is effectively

anchored in a particular narrative direction. Out of sample this anchoring ensures that

new but related articles are more likely to be selected, thereby preserving continuity of

the narrative attribution. Although each decision point in the training sample in principle

could contain a narrative reference article ãT , we only specify three related to the collapse

of Long-Term Capital Management in 1998Q3, the 9/11 terror attacks in 2001Q3, and

the bankruptcy of Bear Stearns in 2008Q1.

Appendix E.2 provides additional training details and hyperparameter settings.

6.3 Application results

Capturing business cycle fluctuations and narrative attribution are the primary objectives

of the Narrater. Predictive accuracy of observables, however, provides a more objective

evaluation of model performance. For this reason we start by evaluating growth predic-

tions and then in subsequent sections discuss the model’s narrative output.

6.3.1 Growth predictions

To evaluate the model’s growth predictions we use the sum of the elements in ŷ
(̂i)
tf+1,reg

as a forecast of ∆8GDPTf+1, the observed eight-quarter GDP growth, and compare it

against a Dynamic Factor Model (DFM) benchmark. The DFM follows the specification

outlined in Section 4.1 and produces recursive one-step-ahead forecasts via the Kalman

Filter. To avoid information leakage, we evaluate all models over the 2010–2023 period,

which is strictly out-of-sample for the Narrater.

Figure 5a shows the cumulative difference in squared prediction errors between the

Narrater versions and the DFM benchmark. For the sample as a whole, the differences are

not statistically significant. However, the Narrater models tend to outperform the DFM

during the early Covid-19 period, suggesting the model’s capacity to integrate timely

textual information during periods of heightened volatility. Furthermore, using a fully

RL-based implementation typically yields a small improvement in average forecasting

performance, even with a somewhat outdated policy function. Overall, the Narrater-

RL variant trained with RMSE-only rewards performs best, although the differences are

modest.

To examine how predictive accuracy evolves within a quarter as new information be-

comes available, we focus on the Narrater-greedy model and replace the predictions based

on the îth article with those obtained as the simple running average of all the i articles
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Figure 5. Figure 5a reports the cumulative squared prediction error difference between the Narrater and

the DFM benchmark. A falling value implies a relative Narrater improvement. The shaded areas are 95%

confidence intervals of differences in predictive performance, computed following Diebold and Mariano

(1995) with HAC corrected standard errors. Figure 5b reports the real-time estimates of ŷ
(i)
Tf+1,reg implied

by all incoming news and aggregated into either the sum of all its components or only the demand and

supply components. The white areas are time periods with data not seen during training and validation.

within the quarter. Focusing on daily time steps, Figure A.2a (Appendix A) illustrates

this dynamic and echoes findings in the nowcasting literature (Giannone et al., 2008):

Compared to the DFM, the Narrater shows a relative performance gain of approximately

20% at the start of the quarter, which steadily improves, stabilizing around 27% relative

improvement after one month (30 days) of news data has been processed.9

6.3.2 The business cycle and economic sentiment

Figure 5b presents intra-daily business cycle estimates implied by processing all articles in

the application sample. The correlations between the business cycle estimates provided by

the Narrater-greedy and Narrater-RL models are high and above 0.95 (Table A.1 in Ap-

pendix A). For clarity we thus use the estimates obtained from rolling the Narrater-greedy

model forward at each decision point in the sample. Specifically, we display predictions

aggregated from the components of ŷ
(i)
Tf+1,reg, either as the full sum or restricted to the

demand and supply components for each article instance in the sample. For comparison,

we also include quarterly business cycle estimates from three standard filtering methods:

9The performance scores in this section are a function of training data assumptions, model structure, and

the adequacy of the data sources used for prediction. To highlight the role of the latter we perform the

predictive experiment using a generic text sequence for all time periods. I.e., we replace the DN news

corpus with the sequence; “This is not a real sentence. This is just noise and should not contribute towards

lowering the prediction error.”, reflecting prior confidence in the DN corpus. The results reported in

Figure A.2b (Appendix A) support this prior and show that the DN-based news helps improve predictive

accuracy with a roughly 25% relative improvement.
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(a) Attribution importance
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(b) Business cycle decomposition
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Figure 6. Figure 6a reports, for four randomly chosen dates, the probability score for the most likely

articles and their implied business cycle estimate. Figure 6b reports the real-time estimate of the vector

ŷ
(̂i)
Tf+1,reg. The white areas are time periods with data not seen during training and validation.

the eight-quarter GDP difference (Hamilton, 2018), the HP filter with λ = 40000 (Ho-

drick and Prescott, 1997), and a band-pass filter targeting cycles between 1.5 and 8 years

(Baxter and King, 1999).10

The model’s cyclical estimates are well aligned with the inductive bias instilled into the

model via the training data, and as Figure 5b illustrates, also well aligned with estimates

obtained from the other methods. The usage of the daily news input, however, facilitates

more frequent updates using the Transformer-based model than the other filtering meth-

ods considered here. It is also clearly visible how adding noise to the demand and supply

components of ŷ
(i)
tf+1,reg substantially increases the variation in the predictions.

Turning to the quarterly time frequency Figures A.1a and A.1b (Appendix A), compare

the model’s filtered (real-time) and smoothed (retrospective) business cycle estimates.

The squares show ŷ
(̂i)
Tf+1,reg as predicted at the end of each quarterly segment, while the

solid lines reflect the smoothed estimates ŷ
(̂i)
1:Tf+1,reg. Although the filtered estimates are

revised slightly as new data becomes available, these adjustments tend to be modest,

suggesting robustness in the model’s real-time inference.

A large literature documents a strong link between aggregate sentiment and the busi-

ness cycle (Blanchard, 1993; Barsky and Sims, 2012; Shapiro et al., 2022). Figure A.3a

(Appendix A) shows that Narrater-greedy sentiment, averaged across articles and normal-

ized, correlates with the estimated cycle at 0.83 on a quarterly basis. At the article level,

sentiment is noisier, has a negative bias, and is more weakly correlated, as illustrated

in Figure A.3b (Appendix A). When aggregated to daily frequency, the correlation re-

10The HP filter parameter λ = 40000 is standard for Norwegian GDP applications. As Norway lacks

an official business cycle dating authority (unlike the U.S. NBER), the evaluation of cyclical estimates

remains inherently subjective.
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mains above 0.6, supporting the model’s assumption that sentiment and macroeconomic

conditions are (partly) jointly driven by common shocks.

6.3.3 Narrative attribution

Having established that the model produces plausible estimates of the business cycle and

reasonable growth predictions, we now turn to its more structural outputs.

Figure 6a highlights how narrative attribution shapes business cycle estimates. It

reports the implied change in the cycle at multiple dates for the 20 articles with the

highest selection probabilities using the Narrater-RL framework. Selecting a different

narrative can materially shift short-term dynamics, underscoring the value of a systematic

and principled attribution scheme. As we document below, however, the RL-based and

greedy versions considered here produce reasonably similar structural interpretations.

The vector ŷ
(̂i)
Tf+1,reg delivers a real-time decomposition of the business cycle into de-

mand, supply, and noise. Figure 6b plots demeaned contributions over time. Noticeable

business cycle events, such as: the pre–Great Financial Crisis boom is demand-led; the

subsequent downturn reflects negative supply shocks; and the Covid-19 recession com-

bines both, with a modest late-sample demand rebound. Noise is present throughout but

wanes in recent years. The figure reports output from the Narrater-greedy model. The

default Narrater-RL model yields a similar decomposition; component correlations with

the greedy version are 0.93 (demand), 0.93 (supply), and 0.59 (noise).

Although these decompositions cannot be objectively verified, we compare them to

the structural decomposition generated by the DFM used to simulate training data. Fig-

ure A.4 (Appendix A) shows that 70% (75%) and 82% (88%) of the Narrater-greedy ’s

(Narrater-RL) demand and supply decompositions, respectively, fall within the admissible

bounds of the DFM’s when this model is estimated using the whole sample. Considering

that Narrater ’s outputs are real-time, unlike the ex-post DFM estimates, this degree of

overlap is encouraging.11

Figure 7 uses the Narrater-greedy model output, and combines quarterly business cycle

estimates with extractive summaries of news articles, using the headline and classification

of article î for each quarter. To maintain clarity, summaries are shown selectively, while

Table 3 provides a list of representative first sentences for interpretability. Additional

11Figure A.5 (Appendix A) displays the fraction of news articles classified as demand or supply, aggregated

to quarterly frequency, and using the Narrater-greedy model version. Three observations stand out. First,

only 15–20% of articles are classified as demand- or supply-related, implying most news is categorized

as noise. Second, the temporal distribution of classified news aligns with known events, e.g., increased

demand coverage in the early 2000s and around the Great Financial Crisis, and increased supply coverage

during the early sample period, post-crisis years, and the Covid-19 episode. Third, demand-related

coverage shows more variation over time, possibly due to an upward drift in classification rates.
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Figure 7. Real-time estimate of the vector ŷ
(̂i)
Tf+1,reg together with the headline and class of article â in

a given quarter. To not clutter the graph extractive news summaries are not illustrated for each quarter.

The white areas are time periods with data not seen during training and validation. The news texts are

translated from Norwegian to English using GPT-4.5. The stacked bar reports the class share of î articles

across the whole sample.

sentiment and class outputs for î articles are shown in Figure A.6 (Appendix A).

Given that each quarter includes over 2000 articles, the quality of these summaries is

notable, and suggests meaningful scope for model-driven narrative attribution. For ex-

ample, headlines such as “Hegnar beaten by Lahnstein”, “The Monster gone in Sweden”,

and “Concerned about lower productivity” plausibly reflect noise, demand, and supply

stories, respectively. Moreover, the narrative structure aligns well with known macroe-

conomic developments, for instance, Covid-19-related stories during the 2020 downturn,

recession-themed articles during global slowdowns, and oil-related news during the energy

crisis in 2014 and 2015.

Evaluated across the whole sample, roughly 40% of the summaries are allocated to the

demand and supply classes (Figure 7). To further illustrate how the model output can be

used to gauge the narrative strength of this type of attribution we compute two additional

metrics for each quarter t; the RMSEMargin and ClassSharpness. The RMSEMargin

is defined as the relative performance gap between the best-performing article and the

average performance of the next K = 100 best articles - all in terms of RMSE loss.

Similarly, we define ClassSharpness for quarter t as the proportion of top-K articles

whose predicted class matches that of the chosen article.

Figure 8a illustrates how periods with a high ClassSharpness and RMSEMargin typ-

ically are associated with notable global events and business cycle fluctuations. For in-

stance, both the global financial crisis (2009) and the Covid-19 outbreak (2020) display

relatively large RMSEMargins alongside high class coherence. In contrast, years such as

2002 and 2012 combine low RMSEMargins with weaker class coherence, suggesting more

random and thus less focused narratives.
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Table 3. The headline, first sentences, date, class, and sentiment of selected news stories. The news

texts are translated from Norwegian to English using GPT-4.5.

Date Class Sent. Headline and text

1998Q1 Noise -0.53 Hegnar swindled by Lahnstein: “Newspapers with profits exceeding two

million kroner lose press support. The Ministry of Culture has enacted

a profit cap that means Trygve Hegnar’s Finansavisen and...”

2000Q4 Demand -0.53 Nervousness and large volatility: “It has been quite a turbulent week for

American and European stock investors. The nervous atmosphere in the

stock markets was underscored by the significant price movements....”

2004Q4 Supply 0.13 Considering increasing production: “Saudi Arabia may increase the

country’s production capacity to 12.5 million barrels per day to ensure

that the oil market is adequately supplied...”

2009Q3 Demand -0.61 “The Monster” is missing in Sweden: “The economic downturn is hitting

Sweden hard, but the country is recovering faster than the government

initially feared...”

2012Q3 Demand -0.65 Interest rates: “A series of disappointing confidence indicators from Eu-

ropean businesses sparked new concern about the euro crisis...”

2017Q1 Supply -0.55 Concerned about falling productivity: “Most of us have gotten less to get

by on. But one of the most worrying things is that productivity growth

in the industry is falling, warns researcher Ådne Cappelen...”

2019Q3 Demand -0.62 Braathen: “Nobody is more affected by flight shame than I am”: “Per

G. Braathen (58) must lay off one third of the employees at the Swedish

airline BRA because passenger numbers are falling short. He believes

that the resulting shame will spread to Norway...”

2020Q2 Supply -0.51 Op-ed: The crisis measures were necessary, but now people must return

to work: “Typically enough, there is now, in the start-up phase, criticism

of the emergency crisis measures taken during the shutdown phase. Even

so, other measures are needed now. Several have criticized the crisis

measures for contributing to companies choosing to remain closed...”

The bar plot in Figure 8b shows that the selected articles from the Narrater-greedy

summation routine also tend to be among the articles with the highest probability score

when applying the default Narrater-RL policy function. Indeed, the median of the greedy

selections is above the 75th percentile of the top performing articles using the default

Narrater-RL model, and the two approaches selects the same article class in 65% of the

cases. Table A.1 (Appendix A) shows that this statistic increases if a more RMSE oriented

reward function is used. Thus, narrative attribution is affected by user preferences, but

still fairly consistent across the different hyperparameter specifications considered here.

An advantage with the Narrater-RL-based approach is that it naturally delivers prob-
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Figure 8. Figure 8a reports a scatter plot of the RMSEMargin and ClassSharpness measures. Quadrants,

illustrated using red and gray broken lines, are defined using the median for the in- and out-of-sample

periods, respectively. Values are aggregated to yearly averages for visual clarity. See the text for further

details. The black bars in Figure 8b report the relative rank, defined as 1 − rts−1
Nts−1 , between articles

selected by the Narrater-greedy and Narrater-RL routines, where rts is the rank of the Narrater-greedy

selection in the probability distribution of the default Narrater-RL routine. The blue lines report 1−Ĥts ,

where the broken line is the raw estimate and the solid line is smoothed with a 4-period moving average

for visual clarity. The white areas are time periods with data not seen during training.

abilistic policy weights that quantify the decisiveness of each choice. The blue line in

Figure 8b reports 1− Ĥts , where Ĥts = Hts/log(|Ats |), as a measure of attribution deci-

siveness across time. There is relative high entropy in the early 2000s, following the Great

Financial Crisis (GCF) and the oil-price slump in 2014, and also in the period before and

after Covid-19.

Another favorable property of the probabilistic approach is that it also enables period-

level “abstractive” summaries. Figures 9a–9f provide an illustration where headline words

are weighted by an article’s selection probability and rendered as traditional word clouds.

We focus on six dates/periods aligned with canonical business cycle episodes. Because

entropy varies over time, the sharpness of narrative attribution likewise fluctuates, as

evident in the figure, but the relevance of the narrative attribution is striking: The model

automatically surfaces the mid-2014 oil-price slump, the Brexit referendum, the China-

U.S. trade war, Covid-19 and remote work, and the inflation surge towards the end of the

sample.

6.4 The oil market and alternative model configurations

To demonstrate the flexibility of the framework, and how it is easily adaptable and capable

of addressing diverse user needs, we also test it in a setting where the goal is to capture

global oil market dynamics as identified in Baumeister and Hamilton (2019), hereafter
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Figure 9. Figures 9a–9f report traditional word clouds derived from words in news headlines weighted

by the article’s selection probability using the default Narrater-RL.

referred to as BH, and in two other, less structural, configurations exemplifying news

topic identification and mixed-frequency data processing. In the interest of preserving

space, the former application is presented below, while the two latter are relegated to

Appendix C.

In the oil market application we use the monthly data, structural model, and identi-

fication restrictions from BH to generate synthetic training data and then estimate and

apply the implied Narrator-oil model as generically described in Sections 4.4 and 6.1,

respectively. This experiment replaces GDP predictions with oil price predictions, but

keeps the maintained assumption that news articles for the current period (month) are

available whereas the oil price is not. I.e., in the Narrator-oil model the decoder input is

the monthly growth in the real price of oil and the output its structural decomposition.

The reminding time series features enter the time series encoder, with D = 3.12 BH iden-

tify five shocks; oil supply, economic activity, oil consumption demand, inventory demand,

and a measurement error we label as noise. For simplicity we combine the oil consumption

and inventory demand shocks such that R = C = 4. Training and validation data are

generated with the simulation scheme in Section 4.1, with minor modifications described

12Following BH, and data provided here https://sites.google.com/site/cjsbaumeister/research, we use global

crude oil production, an extended version of the OECD’s index of monthly industrial production, a proxy

for OECD crude oil inventories and measure the real price of oil using the U.S. refiner acquisition cost

deflated with U.S. inflation.
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Figure 10. Figure 10a reports the real-time estimates of ŷ
(i)
Tf+1,reg implied by all incoming news and

aggregated into the sum of all its fundamental components. Figure 10b reports the class share of i and

î articles across the out-of-sample evaluation period. Figures 10c–10e report traditional word clouds

derived from words in news weighted by the article’s selection probability using the RL-based policy.
.

in Appendix C.2. As before, no post 2010 data is used for training or simulation, but

preserved for the out-of-sample evaluation.

Table C.2 (Appendix C.3) documents that the oil-based model retains the strong classi-

fication performance on the evaluation data as previously documented for the benchmark

model. Figure 10 summarizes key results from the out-of-sample experiment, were we

start by focusing on the results from the greedy policy. First, processing all incoming

news stories results in a large outcome space. However, the predictions implied by the

selected news are relatively well aligned with the actual outcomes and the correlation

between these predictions and (oil) news sentiment is above 0.9. When more formally

evaluated the oil price predictions are not significantly different from those obtained from

a Random Walk (RW), which is a hard benchmark in this context (Figure A.7a Ap-

pendix A). Second, close to 70% of the news articles in this corpus are “irrelevant” for

the price of oil, and classified as noise. In contrast, for the articles actually selected by

the greedy policy the majority are either supply or demand related. I.e., the proposed

filtering framework enables relevant signal extraction even in high noise environments.
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In terms of narrative attribution, Figure A.8 (Appendix A) shows that the predicted

structural decompositions tend to fall well within the bounds, and in-sample estimates,

of the underlying SVAR used by BH. However, even though the time series data likely

disciplines the structural decompositions and average classification scores, we observe that

the narrative content of the selected articles often is less convincing with too much focus on

domestic developments. Although Norway is a major oil exporter, the high-dimensional

action space and the fact that DN is a Norwegian focused general business news outlet,

are likely explanations.

To improve narrative attribution we thus turn to the full RL-based policy which allows

for including narrative prior information. Here this is supplied using the text sequence

protoypes used when creating classified training data (Appendix C.2) and allocated across

time in line with findings in BH, where oil price fluctuations in the period used for policy

estimation are driven equally by oil supply and economic activity disturbances. In addi-

tion, we impose a hard relevance gate on the candidate action set, retaining only articles

that contain the words oil or international. This restriction is deliberately minimal and is

intended solely to exclude clearly irrelevant domestic business news rather than to inject

additional narrative structure.13

The full RL-based policy performs on par, or better, than the greedy approach in

terms of predictive accuracy (Figure A.7a), tilts the average classification scores somewhat

towards the narrative prior (Figure 10b), and retains a large overlap with the (in-sample

generated) structural decomposition implied by the BH model (Figure A.8). Applying

the estimated policy function also improves the model’s ability to produce meaningful

narrative attribution. This is illustrated in Table 4, which report the predicted class,

sentiment, and headline and text of news stories with the highest probability using the

RL-based policy for dates with relatively low entropy (Figure A.7b Appendix A). Similarly,

focusing on three periods with large changes in the price of oil, and article content weighted

by their selection probability, results in sensible period-level “abstractive” summaries

(Figures 10c–10e): Negative international economic activity focus in late 2014, a surprising

change in Saudi leadership and potential strategic rethink in the spring of 2016, and a

notable change in climate focus and its potential consequences for energy markets in early

2019. Still, we conjecture that the quality of the narrative attribution could be further

improved using more targeted text data input.

13In terms of hyperparameters, we let λN = 1.2, λF = λP = 0, but keep the reminding parameters as

defined in Table E.1 (Appendix E.2). To limit the computational complexity associated with policy

optimization over long time series and large action sets, the policy is trained on monthly data covering

the period 2005M1 to 2009M12 - preserving post 2010 data for out-of-sample evaluation, as before.
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Table 4. The headline, first sentences, date, class, and sentiment of selected news stories using the

RL-based policy. The news texts are translated from Norwegian to English using GPT-4.5.

Date Class Sent. Headline and text

2012M1 Econ. act. -0.18 A Very Dangerous Phase: “Warning: The global economy has entered

a very difficult and dangerous phase, the World Bank warns. Emerg-

ing economies with strong growth are cautioned against believing they

are immune to the debt crisis in parts of the EU region and the United

States...”

2013M6 Oil supply 0.20 Secured a Major Contract: “The oil exploration company EMGS has

signed a contract worth 600 million Norwegian kroner with one of the

world’s largest oil companies. The contract is the third largest in EMGS’s

history...”

2014M11 Econ. act. -0.39 Weak Report: “The export and oil service supplier industry expects

weaker growth going forward than it did three months ago, according

to Norges Bank’s regional network survey... Economists believe the re-

port is clearly weaker than Norges Bank had anticipated...”

2015M6 Oil supply 0.16 OPEC Moves in Unison: “Although the oil price is forty percent below

the level at the same time last year, OPEC countries chose to keep pro-

duction unchanged at their meeting in Vienna. OPEC and Saudi Arabia

are no longer trying to support prices by shutting off oil taps. OPEC will

no longer act as a swing producer...”

2016M11 Oil supply 0.12 Maintains the Forecast: “OPEC is keeping its estimate for global oil

demand in 2016 unchanged at 94.40 million barrels per day...”

7 Conclusion

Human perception and decision-making are inherently multimodal; traditional empirical

models in economics, however, are largely unimodal. In macroeconomics, for example,

modern time-series tools deliver high-quality business cycle estimates and structural de-

compositions of its fluctuations, but typically lack a narrative interpretation that textual

data might help provide. Against this background, we explore how recent advances in

deep learning and NLP - specifically, encoder–decoder Transformer architectures - can be

used to construct a multimodal supervised filter for narrative attribution.

While inherently domain agnostic, we call our proposed model the Narrater and

demonstrate how it jointly processes (news) text and (macroeconomic) time series via con-

textualized embedding representations. At the core of this framework is the Transformer-

based attention mechanism, which integrates modalities with potential different frequen-

cies and reporting lags while preserving temporal context. This makes the architecture

well suited to macroeconomic settings with asynchronous and high-dimensional informa-
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tion. In the process, we show how the model can be used together with Reinforcement

Learning techniques to produce summaries of the high-frequency and high-dimensional

flow of textual information encountered in real-word contexts.

Empirically, on Norwegian data, the model yields structural decompositions and narra-

tives that align with well-known historical episodes; it also attains quasi real-time predic-

tive performance on par with, or modestly better than, competitive benchmarks. Permu-

tation tests, ablations, and hyperparameter experiments show that both data modalities

matter, larger embeddings improve fit within resource limits, fine-tuning the language

encoder is critical, and multi-task learning improves model performance. In additional

applications we demonstrate how the framework also can be used to produce reasonable

filtering of international oil market dynamics and less structural topic extraction.

Our contribution is foremost methodological: a general multimodal supervised filter-

ing framework for measurement and narrative attribution. We do not claim model-free

identification of causal relationships from multimodal data. Rather, we attribute narra-

tives consistent with a maintained structural view. This is both a strength and limitation.

Limitations include reliance on labels and dynamics derived from underlying structural

constraints. However, this is also the model’s strength because it makes the framework

general and easily adaptable to different user needs and structural views.

Going forward we envision numerous improvements and extensions based on this type

of model architecture, which also can be useful in other settings where text (or other

unstructured streams) co-evolves with numeric time series.
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Peters, J., K. Mülling, and Y. Altün (2010). Relative entropy policy search. In Proceedings

of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 10), pp. 1607–

1612.

Ramey, V. A. (2011). Identifying government spending shocks: It’s all in the timing. The

Quarterly Journal of Economics 126 (1), 1–50.

Requeima, J., J. Bronskill, D. Choi, R. Turner, and D. K. Duvenaud (2024). Llm processes:

Numerical predictive distributions conditioned on natural language. Advances in Neural

Information Processing Systems 37, 109609–109671.

Romer, C. D. and D. H. Romer (1989). Does monetary policy matter? A new test in the

spirit of Friedman and Schwartz. NBER macroeconomics annual 4, 121–170.

Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv

preprint arXiv:1706.05098 .

43



Schularick, M. and A. M. Taylor (2012). Credit booms gone bust: monetary policy,

leverage cycles, and financial crises, 1870–2008. American Economic Review 102 (2),

1029–1061.

Schulman, J., S. Levine, P. Abbeel, M. Jordan, and P. Moritz (2015). Trust region policy

optimization. In Proceedings of the 32nd International Conference on Machine Learning

(ICML), pp. 1889–1897.

Shapiro, A. H., M. Sudhof, and D. J. Wilson (2022). Measuring news sentiment. Journal

of Econometrics 228 (2), 221–243.

Shiller, R. J. (2017). Narrative economics. American Economic Review 107 (4), 967–1004.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica 48 (1), 1–48.

Smets, F. and R. Wouters (2007). Shocks and frictions in US business cycles: A Bayesian

DSGE approach. American economic review 97 (3), 586–606.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014).

Dropout: a simple way to prevent neural networks from overfitting. The journal of

machine learning research 15 (1), 1929–1958.

Stock, J. and M. Watson (2012). Disentangling the channels of the 2007-2009 recession.

Brookings Papers on Economic Activity Spring 2012, 81–135.

Stock, J. H. and M. W. Watson (1989). New indexes of coincident and leading economic

indicators. In O. J. Blanchard and F. Stanley (Eds.), NBER Macroeconomics Annual,

NBER Chapters, pp. 351–394. Cambridge, MA: The MIT Press.

Stock, J. H. and M. W. Watson (2002). Macroeconomic forecasting using diffusion indexes.

Journal of Business & Economic Statistics 20 (2), 147–62.

Stock, J. H. and M. W. Watson (2016). Dynamic factor models, factor-augmented vector

autoregressions, and structural vector autoregressions in macroeconomics. In J. B.

Taylor and H. Uhlig (Eds.), Handbook of Macroeconomics, Volume 2, pp. 415–525.

Elsevier.

Thorsrud, L. A. (2018). Words are the new numbers: A newsy coincident index of the

business cycle. Journal of Business & Economic Statistics , 1–17.

Todorov, E. (2006). Linearly-solvable markov decision problems. Advances in Neural

Information Processing Systems , 1369–1376.

44



Tsai, Y.-H. H., S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and R. Salakhutdinov

(2019). Multimodal Transformer for Unaligned Multimodal Language Sequences. In

Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-

tics, pp. 6558–6569.

Turc, I., M.-W. Chang, K. Lee, and K. Toutanova (2019). Well-read students learn better:

On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 .

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,  L. Kaiser, and

I. Polosukhin (2017). Attention is all you need. Proceedings of the 31st International

Conference on Neural Information Processing Systems , 6000–6010.

Veldkamp, L. L. (2011). Information choice in macroeconomics and finance. Princeton

University Press.

Wen, Q., T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun (2023). Transform-

ers in time series: a survey. In Proceedings of the Thirty-Second International Joint

Conference on Artificial Intelligence.

Woo, G., C. Liu, A. Kumar, C. Xiong, S. Savarese, and D. Sahoo (2024). Unified training

of universal time series forecasting transformers. In Proceedings of the 41st International

Conference on Machine Learning.

Xu, P., X. Zhu, and D. A. Clifton (2023). Multimodal learning with transformers: A sur-

vey. IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (10), 12113–

12132.

Zhang, H., P. S. Yu, and J. Zhang (2025). A systematic survey of text summarization:

From statistical methods to large language models. ACM Computing Surveys 57 (11).

Ziebart, B. D. (2010). Modeling Purposeful Adaptive Behavior with the Principle of Max-

imum Causal Entropy. Ph. D. thesis, Carnegie Mellon University.

45



Appendices for online publication

Appendix A Additional results

Table A.1. Correspondence and correlation between Narrater-greedy and different implementations of

Narrater-RL; default, only RMSE rewards (λF = λN = λP = 0), and only RMSE and NPRIOR rewards

((λF = λP = 0).

Default Only RMSE rewards Only RMSE and NPRIOR rewards

Class/selection 0.65 0.72 0.70

Business cycle 0.97 0.95 0.95
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Figure A.1. The graphs report the real-time (filtered) estimates ŷ
(̂i)
Tf+1,reg together with the smoothed

versions ŷ
(̂i)
1:Tf+1,reg. The white areas are time periods with data not seen during training and validation.
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(a) Nowcasting performance
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Figure A.2. Figure A.2a reports the predictive performance of the Narrater relative to the DFM, when

the former predictions are constructed as averages of 1 - 90 daily (x-axis) predictions. Figure A.2b reports

the cumulative squared prediction error difference between the Narrater and a version of the model using

a generic and recurrent text sequence. A falling value implies a relative Narrater improvement. The

shaded areas are 95% confidence intervals of differences in predictive performance, computed following

Diebold and Mariano (1995) with HAC corrected standard errors.

(a) Sentiment quarterly
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(b) Sentiment intra-daily
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Figure A.3. Figure A.3a reports the normalized quarterly mean of the Narrater ’s real-time senti-

ment predictions. Figure A.3b reports the quarterly real-real time estimates of ŷ
(i)
Tf+1,sent implied by all

incoming news. The white areas are time periods with data not seen during training and validation.
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Figure A.4. Real-time (predictive) demand and supply decomposition produced by the Narrater to-

gether with the similar objects produced by the DFM, described in Appendix B. For the DFM these are

ex-post estimates (because they are computed with data for the whole sample available). Since the DFM

is identified using sign restrictions, we report the set of historical shock decompositions associated with

the impulse response functions fulfilling the sign restrictions, i.e., the admissible set. The white areas are

time periods with data not seen during training and validation of the Narrater.
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(b) Supply fraction

2000 2005 2010 2015 2020
0.1

0.15

0.2

0.25

0.3

0.35

-1.5

-1

-0.5

0

0.5

1
Predicted supply fraction (quarterly)
Business cycle (real-time, quarterly, RHS)

Figure A.5. Fraction of news classified as either demand or supply using ŷ
(i)
Tf+1,class and each quarterly

time segment. The white areas are time periods with data not seen during training and validation.
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(a) Error difference
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Figure A.7. Figure A.7a reports the cumulative squared prediction error difference between the

Narrater-oil and the RW benchmark. A falling value implies a relative Narrater-oil improvement. The

shaded areas are 95% confidence intervals of differences in predictive performance, computed following

Diebold and Mariano (1995) with HAC corrected standard errors. Figure A.7b reports 1 − Ĥts , where

the broken line is the raw estimate and the solid line is smoothed with a 4-period moving average for

visual clarity.
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Figure A.6. Quarterly real-time estimates of the class and sentiment of article î. The white areas are

time periods with data not seen during training and validation.
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Figure A.8. Real-time (predictive) structural decompositions produced by the Narrater-oil model

together with the similar objects produced by the SVAR proposed by Baumeister and Hamilton (2019).

For the SVAR these are ex-post estimates (because they are computed with data for the whole sample

available). Since the SVAR is identified using sign restrictions, we report the set of historical shock

decompositions associated with the impulse response functions fulfilling the sign restrictions, i.e., the

admissible set.

Appendix B Generating training data

As described in Section 4.1, synthetic training data is generated by simulating time series

data from an estimated Dynamic Factor Model and mapping text to time series using

the implied historical shock decomposition. Prior to this, the class and sentiment of a

large set of text data used for training and validation is automatically recorded using

embeddings. Below we provide the details of each step.

B.1 Business cycle simulations

To simulate synthetic macroeconomic data we assume a state space system where the

dynamics of the observable data are described by a set of latent state variables evolving

according to an autoregressive process. In particular, let xts
tts be a D×1 vector of observed
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time series at time tts and ftts a r × 1 vector of latent factors, such that:

xts
tts = Λftts + utts , utts ∼ N (0,R),

ftts = Φ(L)ftts−1 + Hεtts , εtts ∼ N (0,Q),
(17)

where Λ is a D× r matrix of factor loadings, utts is a D× 1 vector of idiosyncratic errors

(or noise), Φ(L) is a lag polynomial matrix of autoregressive coefficients. R and Q are

the variance-covariance matrices of the error terms. We assume a diagonal structure for

R but not for Q. Moreover, we write the transition equation in (17) using the companion

form, and let q denote the number of latent factors such that q ≤ r and the number of

lags of the factors is p (with p × q = r). Thus, εtts is a q × 1 vector of innovations (or

shocks) to the factors and H is a r × q selection matrix.

For our particular experiment, we focus on two fundamental shocks (q = 2), namely

aggregate demand and supply shocks, and identify the latent factors as an aggregate

business cycle index and an underlying inflation measure. The factors are identified

following the unit identification scheme described in, e.g., Bai and Wang (2014), implying

that the upper left q × q block of Λ is the identify matrix. The relationship between

the reduced form errors and the structural shocks is given by εtts = Aetts . Because

(Aettts )(Aetts)
⊤ = Q, identification is achieved from E(ettse

⊤
tts) = I and by restricting

the elements of A using sign restrictions following Arias et al. (2018). Accordingly, A is

restricted such that the following relationship holds:[
ε1,tts

ε2,tts

]
=

[
+ +

+ −

][
edtts
estts

]
(18)

where a positive demand innovation moves prices and the business cycle in the same

direction while a positive supply shock moves these factors in the opposite direction.

To simulate training data from the model we first estimate it using the data described

in Section 4.3 and covering the sample 1986 to 2010. We allow for p = 8 lags and apply a

two-step estimation procedure, similar to in Bernanke et al. (2005): Common factors are

first estimated using Principal Components Analysis (PCA) and identified as described

above. Next, these factors are included in the VAR to estimate the time series dynamics

using OLS. Although sign restrictions only give set identification we focus on the structural

parameters associated with the median draw when sampling admissible impulse responses

following (18).

In total we simulate 60000 time series segments from the model. The length of each

segment is determined by the memory constraint of the Narrater, while we always remove

the first five years of simulated data to avoid dependence on starting values. Simulating

data directly from (17) produces synthetic data for the observable macroeconomic indi-

cators (xts
tts) and the latent factors, including the business cycle, where xf

tf
= f1,tts . To
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Table B.1. The class and sentiment sequences and key-words used to generate benchmark embeddings

and Boolean search, respectively. For the key-word lists only the most relevant terms are reported. See

the text for details.

Narrative Text sequence Key-words

Demand “demand, sentiment, expectations” shopping, income, demand, consump-

tion, wage growth, tourism, interest

rate hike, wage settlement, transfers,

consumer loan,...

Supply “productivity, efficiency, innovation,

technology”

technology, labor, strike, sanctions, reg-

ulation, storm, sick leave, leave of ab-

sence, recruitment, overcapacity,...

Positive “positive, strong, good”

Negative “negative, weak, bad”

also produce synthetic data for the associated historical shock decomposition we use:

ftts =
t∑

j=0

ΨjAetts−j, (19)

where Ψj are the impulse response coefficient matrices (from the moving average (MA)

representation of the VAR), and consider the effect of each shock individually on the

implied decomposition of f1,tts . To also capture the noise component we use the element

in utts associated with GDP growth.

B.2 Creating labeled text data

To create labeled text data that can be mapped to the simulated time series dynamics we

proceed in three steps. First we define a set of key-word sequences for the demand and

supply categories and good and bad sentiment. These are listed in Table B.1. Next, we

use the OpenAI API, and the text-embedding-3-small model, to produce embedding

representations of each of these benchmark text sequences. The intuition for this ap-

proach is that the embedding representations capture shared context, and thus captures

broader aspects and abstractions than the key-words themselves. At the same time, using

key-word-based sequences instead of, e.g., prototype sentences, reduces the risk of intro-

ducing unintended sentiment, framing, or policy biases in the categorizations. Finally, we

randomly sample text sequences from the DN news corpus described in Section 4.3, but

only consider news reported within the sample 1986 to 2010, and compute each sampled

article’s similarity with the benchmark embeddings.

More formally, let X denote the set of sampled news texts from the DN corpus (re-

stricted to 1986–2010), and let ϕ : T → Rd be the embedding map induced by the
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text-embedding-3-small model. Likewise, let Bcls = {bc}C−1
c=1 be the benchmark key-

word sequences used for categorization (e.g., demand and supply), and let Bsent = {b+, b−}
be the two sentiment benchmarks used for scoring. Then, for x ∈ X and c ∈ {1, . . . , C−1}
we define class-wise and sentiment similarity as:

sc(x) = cos
(
ϕ(x), ϕ(bc)

)
s+(x) = cos

(
ϕ(x), ϕ(b+)

)
, s−(x) = cos

(
ϕ(x), ϕ(b−)

)
,

where, for any u, v ∈ Rd, cos(u, v) is cosine similarity. Then, to motivate distinct article

classes we set a class-specific threshold:

τc = Q0.9({ sc(x) : x ∈ X }) , c = 1, . . . , C − 1,

where Q0.9(·) denote the empirical 90th percentile, and assign an article x to a distinct

class if its top score clears that class’s threshold:

y(x)class =

c
⋆(x), if sc⋆(x)(x) ≥ τc⋆(x) and c⋆(x) is unique,

noise, otherwise,

with c⋆(x) := arg maxc sc(x). Because τk is the 90th percentile for each class, the majority

of sampled texts are labeled as noise.14 We have experimented with using different thresh-

olds, finding that if we do not define a relatively high threshold value, labeled articles will

be difficult to discriminate. Finally, independently of the class assignment, we compute:

sd(x) = s+(x)− s−(x), y(x)sent = tanh
(
sd(x)

)
∈ (−1, 1),

and use y(x)sent as a measure of the article’s sentiment.

The procedure for creating labeled text data is simple and fast, and allows labeling

a large set of articles automatically. Arguably, the procedure could be improved and

refined in a number of directions. As an alternative we have also explored creating labeled

text data using a Boolean search-based approach. First, two domain-specific dictionaries

of Norwegian terms were manually compiled. One dictionary was intended to capture

aggregate demand news and the other aggregate supply news. The final demand dictionary

contains 72 unique tokens, while the supply dictionary contains 129. The 10 most frequent

words in each list are displayed in the last column of Table B.1. The full lists are available

upon request.

Second, each article was lower-cased, stripped of punctuation, and tokenised. We then

counted the number of hits from the demand and supply dictionaries for every article, pro-

ducing two variables demand count and supply count. An article is labelled as demand

14To avoid poor performance for the minority classes we use a weighted loss function when training the

model. In particular, a class is assigned a weight inversely proportional to its frequency in the train-

ing data. These weights are then used to scale the loss contribution of each training sample so that

misclassifying a minority class costs more than misclassifying a majority class.
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Figure B.1. Manual audit’s confusion matrix when a Boolean search-based approach has been used to

create labeled text data.

when demand count> 0 and supply count=0, and as supply when supply count> 0

and demand count=0. Articles that contain keywords from both lists or from neither list

are classified as noise. To avoid extremely long feature articles with many tangential

topics, we discard texts longer than 1 000 words before applying the rule. The Boolean

approach therefore focuses on relatively short, single-topic news items.

Figure B.1 reports the results from the same type of manual audit as described in

Section 4.2, but now applied to the text data labeled using the Boolean search-based

approach. The overall accuracy is only 0.46, compared to 0.79 for the embedding-based

approach. Similarly, the results presented in Section 6 of the main paper are positive,

suggesting that the embedding-based labeling procedure is reasonable. We thus leave it

for future research to investigate potentially more adequate methods for automatically

creating labeled text data.

B.3 Simulation alternatives

To examine how training data assumptions shape the model’s use of multimodal infor-

mation, we have simulated alternative datasets that explicitly manipulate the sharpness

and noise in the text–time-series mapping. Instead of linearly linking the probability of

drawing each text class to the size of the historical shock decompositions, we apply a

temperature-controlled softmax with τ = 0.2 or τ = 0.6. In addition, for each τ we in-

troduce noise by randomly breaking the link between the true class and the chosen text,

governed by r ∼ Bernoulli(prel) with prel = 0.98 or 1.00.

The additional rows in Figure 4 (Section 5.2) report permutation tests for models

trained on these alternative data. A clear pattern emerges: the sharper and more de-

terministic the mapping between shock decompositions and texts, the more predictive

performance deteriorates when the time-series input is permuted. Similarly, injecting

noise into the textual mapping shifts the model’s reliance toward the time series in the
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Figure B.2. Performance scores relative to the benchmark Narrater model. All model versions are

evaluated on the same validation data. A value below one indicates that the alternative model is better.

text-prediction tasks.

Drawing on the multi-head attention mechanism in the Transformer architecture, an

interesting avenue for future research is to train a single model directly on data generated

under varying assumptions. Such a setup would allow different attention heads to special-

ize in distinct regimes, potentially yielding a final model that is robust across a broader

range of data-generating processes. Speaking to this argument, Figure B.2 reports relative

predictive scores when all models analyzed in Figure 4 are evaluated on a test data set

containing random draws from all five simulation experiments (including the benchmark

described in Section 4.1). Interestingly, under these assumptions, the benchmark model

is worse than all of the alternatives (except in one case), and the best model would be

the one trained on data using the τ = 0.6 and prel = 0.98 assumption.

Appendix C The oil market and alternative model

configurations

To demonstrate the flexibility of the framework, and how it is easily adaptable and capable

of addressing diverse user needs, we also test it in a setting where the goal is to capture

global oil market dynamics as identified in Baumeister and Hamilton (2019), and describe

two other, less structural, configurations exemplifying news topic identification and mixed-

frequency data processing. The former application is presented in Section 6.4, with further

details below, while the two latter examples are fully presented here.

C.1 Topic modeling and mixed frequency data

To exemplify how the proposed framework can be used for news topic identification and

mixed-frequency data processing we consider two alternative configurations of the model:

the Narrater-topic and the Narrater-mixed.

In Narrater-topic we keep the benchmark setup but expand the number of text classes
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to C = 9. Both demand and supply are divided into four topical subclasses - pol-

icy/regulation, labor market, prices, and trade/energy. These subclasses are less “struc-

tural” than the originals but enrich the narrative content and show how the model can

also serve as a supervised topic model.

In Narrater-mixed we highlight the architecture’s mixed-frequency properties and fo-

cus on extractive summarization. Here all text sequences st are intra-quarterly, but only

one is informative for predicting the business cycle, while xts
tts is observed monthly. Be-

cause text and time series are non-overlapping, this model predicts only the latent busi-

ness cycle index rather than reconstructing the full history, but enables efficient filtering

of high-frequency text via cross-attention, with article selection replacing the benchmark

classification task. As such, the RL approach adopted for news summation becomes re-

dundant for this model specification. Allowing simultaneous classification, selection, and

overlapping time windows is possible but would require substantially more memory.

To keep the computational burden and memory requirements for the Narrater-mixed

reasonable we only consider T = C = 10, and since the model does not give any structural

decomposition of the business cycle in this configuration R = 1. Moreover, since we do

not assume any potential temporal relationship between the C articles, equation (2) is

removed and the model head in (10) is attached to the model’s text encoder. Thus, the

sentiment of each of the C articles is predicted, but only one article is relevant for the

business cycle at time Tf + 1. To facilitate this type of selection we further let the text

classification head be a direct function of the time-series-text-embedding cross-attention

scores.

Letting qf
2 denote the 1 × d decoder query vector for time period Tf + 1, the scores

are:

a = softmax

(
qf
2K

txt⊤

√
d

)
∈ R1×T , (20)

and a replaces hf
(3) in (9). This prevents the network from mixing the information in the

two data modalities before identifying the relevant text. In contrast, using the aggregated

attention output from (21) as input for the text selection head would imply that the model

looses the individual identity of the texts before trying to select the correct one. As before

Tf = 40 quarters, but Tts = 120 monthly observations, and we assume that tts = tf + 1

such that (realistically) monthly observations are available for the current quarter.

C.2 Generating training data

Training and validation data are generated with the simulation scheme described in Sec-

tion 4.1 and Appendix B, with minor modifications described below.

To create simulated time series data for training the Narrater-oil model we exchange
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the DFM with the SVAR specification proposed by Baumeister and Hamilton (2019).

The reduced form representation of the model is used to generate simulated time series

which are then decomposed into the historical shock decomposition for the real price of

oil using the model’s structural parameters. For estimation of model parameters we used

data provided here https://sites.google.com/site/cjsbaumeister/research, but truncate the

sample to cover the period 1958 to 2009. For comparison, we also estimate a version of

the model using data ending in 2019, which is the last period in the publicly available

dataset.

To create labeled text data for the Narrater-oil and Narrater-topic experiments we

follow the same type of embedding-based labeling procedure as before. We first define

text sequences for each of the oil market shocks and topic categories of interest. These

are listed in Table C.1. Then, for each sampled text sequence we again use the “text-

embedding-3-small” model to obtain its embedding representation and compute the cosine

similarity with the benchmark embdeddings. Finally, we attach a new class label for each

text depending on the index of the maximum cosine similarity score and the original

classifications. For the Narrater-topic model this implies that we obtain four subclasses

for both “demand” and “supply”.

For the Narrater-mixed experiment we construct a mapping between the text and time

series data so that the sentiment of the true text is as close to tanh(yTf+1,reg) as possible,

where yTf+1,reg is the business cycle index. Then, to construct a set of false articles for

each training and validation observation we simply select the C−1 articles whos sentiment

differs the most with the true sentiment. This clearly simplifies the classification problem.

For practitioners wanting to apply this model a potentially more realistic approach for

creating the set of false articles could be to randomly select articles from the same real

word time index as the true article.

Monthly time series data are sourced to reflect the quarterly time series when possible.

We use the monthly frequency of U, CPI, SPREAD, and OIL, while the reminding vari-

ables are “replaced” by (log) yearly changes in monthly industrial production, retail sales,

and money growth, and the level of OECD’s business tendency survey for Norway. Then

to simulate monthly xts
tts time series data we first use PCA and the monthly variables

to compute one common factor, factor loadings, and the variance of the idiosyncratic

noise. Because the monthly variables have somewhat different sample lengths, we use

data covering the period 1993 to 2010 to derive these objects. Next we simply assume

that the mean of the monthly factors are equal to the quarterly business cycle index from

the the original training data, and use the estimated factor loadings, the variance of the

idiosyncratic noise, and the normal distribution, to simulate monthly observations that

are consistent with the dynamics of the original quarterly business cycle index.
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Table C.1. The table reports the text sequences used to generate the oil- or topic-based embeddings.

See the text for details. Note that terms or translated from Norwegian to English, and that Norwegian

frequently combines two or more words to create a single new word with a specific meaning. E.g.

“monetary policy” is one single word in Norwegian.

Narrative Text sequence

Narrater-oil Oil supply “oil, petroleum, OPEC, supply, production, surprise”

Economic activity “global, economy, activity, expectations, forecast, growth”

Oil consumption demand “oil, petroleum, risk, inventory, speculation, demand”

Narrater-topic Policy/regulation “interest rate, central bank, budget, tax, regulation, mone-

tary policy, fiscal policy”

Labor market “unemployment, employment, jobs, permits, wage, labor

market”

Prices “inflation, consumer price index, cost of living, price level,

price development”

Trade/energy “export, import, trade, trade balance, oil price, energy, war,

geopolitics”

Table C.2. Alternative model specifications and validation data performance. For the Narrater-topic

and Narrater-mixed models the sentiment (Sent.) and business cycle (BusC.) tasks are similar while the

classification task is different.

Narrater Narrater-topic Narrater-mixed Narrater-oil

Class/selection (accuracy) 0.99 0.99 0.99 0.99

Sent. (RMSE) 0.02 0.03 0.03 0.03

BusC. /Oil price (RMSE) 0.18 0.18 0.19 0.5

C.3 Results

Table C.2 reports the different model configurations’ performance on the validation data.

Of main interest here is the classification task. As discussed earlier, the benchmark model

achieves close to perfect accuracy. Although the alternative model configurations per-

form different classification (Narrater-topic and Narrater-oil) or text selection (Narrater-

mixed) tasks, their accuracy is also close to one, exemplifying how these model configu-

rations can efficiently identify, e.g., user-defined news topics or be used to automatically

perform accurate extractive news summaries.

For regression tasks, all alternatives perform worse than the benchmark in predicting

sentiment, and the Narrater-mixed also underperforms on the business cycle. This decline

is not due to poor handling of monthly time series - Figure C.1 shows that cross-attention

assigns weight across the full monthly sequence - but likely due to the removal of structural

decomposition (supply, demand, noise) in the output which previously provided implicit
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Figure C.1. Attention scores from equation (6) and the Narrater-mixed model for period Tf + 1 and

one particular validation set observation. The four lines reflect the different attention heads, while the

x-axis reflect the sequence length of the monthly data.

regularization via multi-task learning (Caruana, 1997; Ruder, 2017) - as documented in

Table 2.

Finally, to illustrate the Narrater-topic output more explicitly, Figure C.2 reports the

fraction of articles classified as one of the four topics across time when the model is used to

process the non-synthetic data: We do, for example, observe an elevated focus on politics

and regulations following the introduction of inflation targeting and the EU enlargement

in the early 2000s, a larger fraction of labor market oriented news during turbulent times

such as the financial crisis and Covid-19 period, and a substantial increase in articles

about prices and inflation towards the latter part of the sample.

Appendix D Transformers and BERT

In the proposed architecture we combine a BERT language encoder with a Transformer-

based encoder-decoder structure for processing time series data. Below we shortly describe

the general Transformer block in a neural network and the BERT structure.

D.1 The Transformer

A Transformer block, sometimes called a Transformer encoder layer, is a key computa-

tional unit originally introduced in the Transformer architecture (Vaswani et al., 2017),

which has since become foundational in a wide range of sequence modeling tasks.

At its core, a Transformer block processes an input sequence representation through

a self-attention mechanism, followed by a position-wise feed-forward network (FFN). The

input to the block is first normalized using a layer normalization operation. Let the input

embedding sequence be represented as a matrix X ∈ Rn×d, where n is the sequence length
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Figure C.2. Fraction of news articles, aggregated to quarterly frequency, classified by the Narrator-topic

model to be about policy/regulation, the labor market, prices, or trade/energy. The white areas are time

periods with data not seen during training and validation.

and d is the feature dimension. After applying layer normalization, a so-called multi-head

attention module computes a weighted sum of values across positions, enabling each ele-

ment to attend to other relevant elements in the sequence. By allowing for multiple heads,

the model can focus on information from different representation subspaces at different

positions, capturing a richer variety of dependencies compared to single-head attention.

This is achieved by projecting the input X into three matrices: queries Q = XWQ, keys

K = XWK , and values V = XWV , where WQ,WK ,WV ∈ Rd×dk are learnable pa-

rameters, and dk = d/h for h attention heads. The scaled dot-product attention is then

computed as:

Attention(Q,K,V) = softmax

(
QK⊤
√
dk

)
V. (21)

For multi-head attention, this operation is performed h times in parallel and the results

are concatenated to form a d-dimensional output. A residual connection is added to the

layer input, and the output is again normalized.

In many sequence modeling settings, attention is required to be causal, which in
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this setting implies that each element in the sequence can only attend to its current

and preceding positions, not future ones. Causality is typically enforced by applying a

masking operation to the attention matrix, ensuring that QK⊤ entries associated with

future positions are set to −∞ before the softmax is applied. This restricts the flow of

information and prevents “peeking” into the future, a property critical for tasks such as

language modeling or time series prediction. In contrast, non-causal (or bidirectional)

attention imposes no such constraints, allowing each element in the sequence to attend

to both past and future elements in the sequence, which can be advantageous for tasks

like machine translation or masked language modeling where full contextual information

is available.

Following the attention layer, a FFN is applied to each position independently. The

FFN typically consists of two linear transformations with a non-linear activation function,

such as ReLU, in between:

FFN(Z) = max(0,ZW1 + b1)W2 + b2, (22)

where Z ∈ Rn×d is the output of the multi-head attention module, and W1 ∈ Rd×df ,

W2 ∈ Rdf×d, b1 ∈ Rdf , and b2 ∈ Rd are learnable parameters. Here df is often chosen

to be larger than d to increase representational capacity. As with the attention layer, the

FFN output is combined with a residual connection and layer normalization. Thus, each

Transformer block systematically refines the hidden representations through attention-

based context aggregation and non-linear transformations.

D.2 BERT

BERT is a widely-used Transformer-based model for natural language understanding

tasks. Introduced by Devlin et al. (2018), BERT leverages a deep stack of Transformer

encoders to produce rich, contextualized embeddings of input tokens. Unlike previous

popular models that relied on a unidirectional context, or did not use an attention mech-

anism at all (Mikolov et al., 2013; Pennington et al., 2014), BERT employs bidirectional

attention, allowing each token to attend to all other tokens in both directions. This

property is achieved through a masked language modeling pre-training objective, where

a certain percentage of tokens are masked and the model learns to predict these masked

tokens from their surrounding context.

One of the primary strengths of BERT-like models is that they are provided pre-trained

on large-scale text corpus, but can be fine-tuned for a broad range of downstream tasks

with minimal architectural modification, often achieving state-of-the-art or near state-of-

the-art results.15 This transfer learning capability stems from the generality and richness

15BERT was originally trained on a corpus which included the English Wikipedia (approximately 2.5 billion
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of the pre-trained token representations, allowing developers and researchers to focus on

task-specific data without the need for extensive task-specific model architectures. As a

result, BERT has seen widespread adoption and has significantly influenced the direction

and methodologies of NLP research.

BERT is provided in several model sizes to accommodate different resource constraints

and performance targets. For example, BERTBASE consists of 12 Transformer encoder

layers, each with 12 attention heads and a hidden size of 768 dimensions (totaling roughly

110 million parameters). BERTLARGE, in contrast, uses 24 layers, 16 attention heads,

and a hidden size of 1024, leading to about 340 million parameters. These models can be

further adapted or distilled into smaller variants, enabling more efficient deployment on

resource-limited devices.

Here we utilize BERTTINY (Turc et al., 2019), which present a family of more compact

BERT models that trade off model size and computation for slightly reduced accuracy, al-

lowing for more efficient deployments while still maintaining strong performance on many

NLP tasks. In particular, the BERTTINY version we use consists of only 2 Transformer

encoder layers, each with 4 attention heads and a hidden size of 128 dimensions (totaling

roughly 4 million parameters).

In terms of processing a text sequence, BERTTINY first uses the same WordPiece

tokenizer as the original BERT model.16 Let a given input sequence consist of n tokens:

(w1, w2, . . . , wn), where each token wi is drawn from a fixed vocabulary V . Then BERT

first maps these tokens into a sequence of token embeddings E ∈ Rn×d, where d is the

hidden dimension and E is a learnable parameter matrix. In addition to token embeddings,

BERT uses learnable position embeddings P ∈ Rn×d to encode the positional information

of each token. Thus, each token wi is represented as:

xi = ei + pi,

where ei and pi are the ith row vectors of E and P, respectively. Stacking these vectors

for all i ∈ {1, . . . , n} results in the input embedding matrix X ∈ Rn×d, which serves as

the input to the first Transformer encoder layer of BERT.

To further prepare the input, and facilitate batch-processing, each input sequence of

length n is typically padded to a fixed length N ≥ n by appending special padding tokens.

A corresponding binary attention mask is then defined and ensures that the model only

attends to non-padding tokens. In BERTTINY N = 512 is the maximum sequence length,

words) and the BookCorpus (approximately 800 million words).
16This tokenizer splits input text into subword units based on statistical properties derived from large-

scale text corpora. By applying the same WordPiece vocabulary and tokenization strategy, BERTTINY

maintains compatibility with BERT’s input format and leverages the same robust subword segmentation

to effectively handle a broad variety of words, including rare and out-of-vocabulary terms.
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and sequences that are longer than this will automatically be truncated. In addition to

padding and masking, BERT also incorporates special tokens into the input sequences.

For a single sequence or a pair of sentences, BERT prepends a [CLS] token at the start

of the sequence and inserts a [SEP ] token after each sentence. The token [CLS] provides

a convenient vector representation for the entire input sequence, and each [SEP ] helps

the model distinguish between sentence boundaries. For our purpose, the former [CLS]

token is important because it facilitates sequence classification.

D.3 Transformers for time series

Originally developed for natural language processing, the Transformer architecture has

increasingly been applied to time series modeling due to its ability to capture long-range

dependencies without relying on recurrence. Indeed, by leveraging self-attention mecha-

nisms, Transformer-based models have demonstrated strong performance across a variety

of time series tasks (Wen et al., 2023).

Key challenges in applying Transformers to time series include encoding temporal

structure and handling multivariate data. For the former, a common approach, adopted

here, is to treat time steps as discrete tokens and apply either fixed or learned positional

embeddings, analogous to token position encoding in NLP models. In particular, let xts
tts ∈

RD denote a D-dimensional vector of macroeconomic variables at time tts ∈ {1, . . . , Tts}.
Each vector is then projected into a d-dimensional embedding space via:

etstts = Wtsx
ts
tts + bts, (23)

where Wts ∈ Rd×D and bts ∈ Rd are learned parameters. The resulting embeddings

are stacked into Ets ∈ RTts×d and serve as the input sequence to the Transformer, with

positional encodings added in the usual manner.17

17To improve temporal awareness, additional features, such as day of the week, month, or other seasonal

indicators, can be incorporated into the embeddings, either through addition or concatenation (Lim et al.,

2021). In settings with long sequences, ”patching” techniques, inspired by computer vision, can also be

employed. Here, consecutive time steps are grouped into segments (patches), reducing the sequence

length seen by the model while preserving intra-patch dependencies. We leave exploring the adequacy of

these model designs for macroeconomic modeling for future research.
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Appendix E Reinforcement Learning for Narrative

Attribution

E.1 Connection to optimal control

Formally, the out-of-sample narrative attribution problem can be cast as a finite-horizon

Markov decision process with state st, action at ∈ At, and reward rt(st, a) given by (12).

Full RL with optimal control would optimize long-horizon returns, but with NT ≫ 2000

this is infeasible. We therefore adopt an approximation with short rollouts of horizon H,

inspired by classical work in stochastic control (Bertsekas and Tsitsiklis, 1996; Bertsekas,

2019). A basic (hard) rollout estimator for the state–action value is:

Q̂H(sT , a) := E

[
H−1∑
h=0

γh rT+h(sT+h, aT+h)
∣∣∣ aT = a

]
, (24)

with discount factor γ.

Standard optimal control relies on the hard Bellman recursion:

Q⋆(s, a) = r(s, a) + γ Es′

[
max
a′

Q⋆(s′, a′)
]
.

However, in high-dimensional settings the max operator easily induce brittle policies and

poor exploration. Entropy-regularized or “soft” control instead augments reward with

an entropy or KL-to-prior bonus (Todorov, 2006; Kappen, 2005; Ziebart, 2010; Haarnoja

et al., 2018), yielding:

Q⋆(s, a) = r(s, a) + γ Es′ [V
⋆(s′)] , (25)

V ⋆(s) = τ log
∑
a′

exp
{

1
τ
Q⋆(s, a′)

}
, (26)

with temperature τ > 0. The induced soft-optimal policy is:

π⋆(a | s) =
exp
{

1
τ
Q⋆(s, a)

}∑
a′ exp

{
1
τ
Q⋆(s, a′)

} , (27)

which recovers the hard Bellman policy as τ ↓0.

To align rollout targets with (27), we map truncated returns to probabilities via a

Boltzmann transform:

qT (a) ∝ exp
{

1
τr
Q̂H(sT , a)

}
. (28)

Equation (28) is the finite-horizon, rollout-based analogue of (27), replacing the exact Q⋆

with the H-step estimator (24).

Training then projects the policy onto these rollout targets using the KL-regularized

objective (15), in line with trust-region methods (Peters et al., 2010; Schulman et al.,
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Table E.1. Hyperparameters and baseline values used in training.

Hyperparameter Baseline value Hyperparameter Baseline value

Learning rate (η) 5× 10−3 Discount factor (γ) 0.97

Softmax inv. temp. (β) 1.6 Rollout horizon (H) 3

Target temp. (τr) 0.8 Entropy weight (λH) 0.01

FUND weight (λF ) 0.8 KL weight (λKL) 0.1

NPRIOR weight (λN) 0.1 Steps of training 250

PER weight (λP ) 0.1 Refresh interval 5 iterations

Continuation strategy deterministic (max) Eval. metric expected reward

2015; Abdolmaleki et al., 2018). With qts of the form (28), the optimizer of (15) is driven

toward the soft-optimal policy (27), with π0 acting as a stabilizing prior and λH controlling

entropy regularization.

Since Q̂H is truncated, noisy, and expensive to recompute for every (s, a) and period

T , we use a parameterized softmax policy πθ(a | s) = softmaxa{β ϕ(s, a)⊤θ} as a compact

approximation class. This projects noisy rollout targets onto a smooth policy, generalizes

across states via features, and amortizes rollout costs so that deployment does not require

recomputing Q̂H . If the class is sufficiently rich, the projection recovers (27) exactly.

E.2 Application details and practical considerations

The training algorithm is outlined in Algorithm 1. We adopt a two-timescale training

scheme common in RL: policy parameters are updated every iteration, while the envi-

ronment is refreshed and new state caches are generated only every few iterations. This

setup, often referred to as using multiple epochs per batch or semi-on-policy training,

reduces computational cost while still providing stable learning. Similar strategies are

standard in policy gradient and fitted policy iteration methods.

Table E.1 lists the parameters used for estimation. The temperature settings are tuned

to avoid large jumps in the learning curves while the weights in the objective function

(15) allow for a small degree of smoothing and conservatism. The weights in the reward

function (12) reflect user specific preferences, and do in our benchmark application reflect

a high weight on fundamental news and relatively little weight on the narrative prior and

persistence.

We implement policy learning on slates of candidate articles rather than on the full

set of available texts. This ease the computational burden: each period typically contains

thousands of articles, making it intractable to evaluate every candidate in each policy

update. By restricting attention to a smaller, representative slate - obtained through
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Algorithm 1 Reinforcement Learning for Narrative Attribution

Require: Dataset {(Ats ,X
ts
ts)}

Ts
ts=1 and for ts = 1 initial states of

(
s1:T−1, x

f
1:Tf−1

)
1: Initialize policy parameters (θ).

2: for iter = 1, 2, . . . do

3: if iter mod 5 = 0 then

4: Build a deterministic prefix trajectory {sts}Ts
ts=1, with sts =

(
sT , x

ts
Tts
, xf

Tf

)
, by

rolling forward with arg maxa πθ(a | sts).
5: for ts = 1 to Ts do

6: Compute approximate action values by H-step rollouts:

Q̂ts(a)← Rollout(sts , a, γ,H; πθ).

7: Form target distribution:

qts(a) ∝ exp{Q̂ts(a)/τr}.

8: end for

9: end if

10: Update θ by one step of (stochastic) gradient descent on:

L(θ) =
Ts∑

ts=1

KL(qts ∥ πθ(· | sts)) + λKL KL(πθ(· | sts) ∥ π0(· | sts)) + λHH(πθ(· | sts)) .

11: Convergence check: stop when L or validation score stabilizes.

12: end for

13: return trained policy πθ(a | sts) ∝ exp{β(ϕ(sts , a)⊤θ)}.

cheap pre-ranking heuristics using the Narrater-greedy approach - we can train efficiently

while still exposing the policy to diverse alternatives. Here we consider 100 articles in each

time period. 10% of these are among the best candidates according to the pre-ranking

heuristics and the rest are randomly selected from the full set of candidates. Learning

convergence is monitored by evaluating the policy function using expected rewards on

fixed slates - keeping the best performing parameter set for later application.

In the reward function accuracy is defined as:

RMSE
(

ˆGDP
(i)
1:Tf

, GDP1:Tf

)
=

√√√√ 1
Tf

Tf∑
tf=1

( ˆGDP
(i)
1:Tf
−GDP1:Tf

)2,

where ˆGDP
(i)
1:Tf

is the implied growth prediction when using article aT,i as input to the
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filter in period T . The narrative prior is measured using the ROUGE-1 score (Lin, 2004):

NPRIOR(a, ãT ) =
2 ·
∑

w∈V min
(
Counta(w),Countā(w)

)
|a|+ |ā|

,

where |a| and |ā| denote the total number of unigrams in the candidate and reference

article, respectively. We further define the degree to which the candidate article is funda-

mental as:

FUND(a) = σ((pfund(a)− pnoise(a))/0.5),

where pfund =
∑

c∈(demand,supply) p(c|a) and σ() is the sigmoid function. Thus, FUND(a)

favors articles with higher probability scores for the demand and supply classes. Finally,

we use cosine similarity to measure:

PER(a,HT−1) =
1

J

J∑
j=1

cos
(
ē(a), h̄j

)
where ē(a) is the sequence embedding from (1) in period T for decision point ts, and h̄j

is the associated embedding for the ts − j periods earlier with J = 4. To further avoid

getting stuck in repeating noise, we gate the PER(a,HT−1) measure by interacting it with

FUND(a) before computing the aggregate reward.

Appendix F LLM prompt

I would like your help in forecasting the quarterly business cycle (F) for Norway alongside a more narrative account of this

prediction. I will provide you with historical data consisting of 38 quarterly values of structural supply,

demand, and noise series in a CSV file titled timeSeriesF_{number}.csv. These values are ordered chronologically from

earliest to latest, with the first and latest values representing time index 2 and 39, respectively. For each quarter, the

sum of the supply and demand series correspond to the business cycle indicator. Your task is to predict the business cycle

indicator (F) for the next quarter (the 40th time index).

↪→
↪→
↪→
↪→
↪→

Additionally, I will supply you with data on 8 macroeconomic variables, consisting of 39 quarterly values, in a separate CSV

file, timeSeriesX_{number}.csv. These variables collectively form the basis for computing the business cycle indicator (F)

for time index 1 to 39.

↪→
↪→

You will also be provided with 39 recent news stories as text data, formatted as a list of strings in a CSV file,

text_{num}.csv. Each news story is associated with one quarter, ranging from time index 2 to 40, and can assist you in

inferring the historical correlation patterns as well as making your business cycle prediction for time index 40. The

class of each text is either **supply**, **demand**, or **noise**, and there is statistical mapping between the

structural three-part decomposition of the values in timeSeriesF_{number}.csv and the classes and sentiment of the texts.

To help you understand this mapping, the true class and sentiment for each of the texts for time index 2 to 39 is provided

in the file classSentiment_{number}.csv. These values are ordered chronologically from earliest to latest, with the 39th

value representing the most recent quarter for which we have data. The classes are identified using numbers, with

demand=1, supply=2, and noise=3.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Alongside predicting the business cycle indicator (F), please also provide:

1. An economic sentiment prediction (S) for the 40th quarter, expressed as a value between -1 and 1, reflecting the overall

economic sentiment which in this context is highly correlated with the business cycle indicator.↪→
2. A classification (C) of the primary driving force behind the economy for the 40th quarter, categorized as one of the

following:↪→
* **Supply**: Economy driven primarily by supply-side factors, defined here as residing in the semantic territory of

"technology, innovation, productivity".↪→
* **Demand**: Economy driven primarily by demand-side factors, defined here as residing in the semantic territory of "demand,

preferences, sentiment".↪→
* **Noise**: No specific supply or demand shocks dominate the economic conditions this quarter.

Your predictions should be informed by the relationship implicit in the historical data among macroeconomic variables, news

stories, and the business cycle indicator.↪→

67



Please provide your predictions structured clearly in the following JSON format:

```json

{

"F": <predicted business cycle indicator value>,

"S": <predicted economic sentiment value between -1 and 1>,

"C": "Supply" | "Demand" | "Noise"

}
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